Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 51 - 60 of 5,067 for text (1.46 seconds)

  1. The ultimate guide to Elasticsearch: Mastering ...

    preprocess text before tokenization. Learn more about the text analysis...Implement iterative testing : Use A/B testing and relevance evaluation...
    developer.ibm.com/articles/elasticsearch-ultimate-guide/
    Mon Feb 09 19:06:44 GMT 2026
      160.4K bytes
      Cache
     
  2. Using the Watson Natural Language Understanding...

    and semantic interpretation of text, allowing computers to learn,...applied to use cases such as text mining, recognizing individual...
    developer.ibm.com/articles/a-deeper-look-at-the-syntax-api-feature-within-watson-nlu/
    Mon Feb 09 19:12:26 GMT 2026
      106.9K bytes
      Cache
     
  3. sklearn.feature_extraction — scikit-learn...

    From text # Utilities to build feature vectors from text documents....documents. text.CountVectorizer Convert a collection of text documents...
    scikit-learn.org/stable/api/sklearn.feature_extraction.html
    Mon Feb 09 10:22:28 GMT 2026
      120.2K bytes
      Cache
     
  4. Exploring the pre-built transforms in Data Prep...

    including text, code, and structured data. While the next article...Tokenization. This transform breaks down text (sentence, paragraph, document)...
    developer.ibm.com/articles/dpk-prebuilt-transforms/
    Mon Feb 09 23:03:46 GMT 2026
      107.2K bytes
      Cache
     
  5. Google Vertex AI - Elasticsearch Labs

    text and images, and then return a text response. Gemini...of customers. Text embeddings Embeddings for Text (textembedding-gecko)...
    www.elastic.co/search-labs/integrations/google
    Mon Feb 09 02:38:21 GMT 2026
      239K bytes
      Cache
     
  6. Evaluating generic phrases using Granite models

    print the response text. print (response[ 'text' ]) Copy code Output:...import pipeline pipe = pipeline( "text-generation" , model =model,...
    developer.ibm.com/articles/generics-granite/
    Mon Feb 09 19:26:33 GMT 2026
      144.7K bytes
      Cache
     
  7. 3.4. Metrics and scoring: quantifying the quali...

    (pre-test and post-tests): \[\text{post-test odds} = \text{Likelihood...recall: \[\text{precision} = \frac{\text{tp}}{\text{tp} + \text{fp}},\]...
    scikit-learn.org/stable/modules/model_evaluation.html
    Mon Feb 09 10:22:30 GMT 2026
      424.9K bytes
      Cache
     
  8. Anatomy of an analyzer | Elastic Docs

    The Elasticsearch data store / Text analysis / Concepts Anatomy...different languages and types of text. Elasticsearch also exposes...
    www.elastic.co/docs/manage-data/data-store/text-analysis/anatomy-of-an-analyzer
    Fri Feb 06 16:33:18 GMT 2026
      112.3K bytes
      Cache
     
  9. 7.7. Kernel Approximation — scikit-learn ...

    \(\mathcal{O}(n_{\text{samples}}(n_{\text{features}} + n_{\text{components}}...\(\mathcal{O}(n^2_{\text{components}} \cdot n_{\text{samples}})\) ,...
    scikit-learn.org/stable/modules/kernel_approximation.html
    Mon Feb 09 10:22:28 GMT 2026
      62.3K bytes
      Cache
     
  10. Configuring built-in analyzers | Elastic Docs

    Elasticsearch data store / Text analysis / Configure text analysis Configuring..."my_text": { "type": "text", "analyzer":...
    www.elastic.co/docs/manage-data/data-store/text-analysis/configuring-built-in-analyzers
    Fri Feb 06 16:33:18 GMT 2026
      109.6K bytes
      Cache
     
Back to Top