Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 751 - 760 of 1,745 for document (1.77 sec)

  1. Post pruning decision trees with cost complexit...

    The DecisionTreeClassifier provides parameters such as min_samples_leaf and max_depth to prevent a tree from overfiting. Cost complexity pruning provides another option to control the size of a tre...
    scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html
    Sat Oct 11 07:51:25 UTC 2025
      102.8K bytes
      Cache
     
  2. Comparison of LDA and PCA 2D projection of Iris...

    The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA)...
    scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html
    Sat Oct 11 07:51:27 UTC 2025
      92.9K bytes
      Cache
     
  3. Plot the decision surfaces of ensembles of tree...

    Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first col...
    scikit-learn.org/stable/auto_examples/ensemble/plot_forest_iris.html
    Sat Oct 11 07:51:26 UTC 2025
      113.9K bytes
      Cache
     
  4. 2.1. Gaussian mixture models — scikit-learn 1.7...

    sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied and full covariance matrices supported), sample them, and estimate them from data. Facilit...
    scikit-learn.org/stable/modules/mixture.html
    Sat Oct 11 07:51:27 UTC 2025
      58.5K bytes
      Cache
     
  5. 7.1. Pipelines and composite estimators — sciki...

    To build a composite estimator, transformers are usually combined with other transformers or with predictors(such as classifiers or regressors). The most common tool used for composing estimators i...
    scikit-learn.org/stable/modules/compose.html
    Sat Oct 11 07:51:25 UTC 2025
      114K bytes
      Cache
     
  6. root_mean_squared_error — scikit-learn 1.7.2 do...

    Gallery examples: Lagged features for time series forecasting Features in Histogram Gradient Boosting Trees
    scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_error.html
    Sat Oct 11 07:51:25 UTC 2025
      111K bytes
      Cache
     
  7. mean_squared_log_error — scikit-learn 1.7.2 doc...

    Skip to main content Back to top Ctrl + K GitHub Choose version mean_squared_log_error # sklearn.metrics. mean_square...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html
    Sat Oct 11 07:51:27 UTC 2025
      109.5K bytes
      Cache
     
  8. 14. External Resources, Videos and Talks — scik...

    The scikit-learn MOOC: If you are new to scikit-learn, or looking to strengthen your understanding, we highly recommend the scikit-learn MOOC (Massive Open Online Course). The MOOC, created and mai...
    scikit-learn.org/stable/presentations.html
    Sat Oct 11 07:51:26 UTC 2025
      33.8K bytes
      Cache
     
  9. Factor Analysis (with rotation) to visualize pa...

    Investigating the Iris dataset, we see that sepal length, petal length and petal width are highly correlated. Sepal width is less redundant. Matrix decomposition techniques can uncover these latent...
    scikit-learn.org/stable/auto_examples/decomposition/plot_varimax_fa.html
    Sat Oct 11 07:51:26 UTC 2025
      96.1K bytes
      Cache
     
  10. make_sparse_spd_matrix — scikit-learn 1.7.2 doc...

    Gallery examples: Sparse inverse covariance estimation
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_spd_matrix.html
    Sat Oct 11 07:51:26 UTC 2025
      110.8K bytes
      Cache
     
Back to top