Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 441 - 450 of 1,705 for document (0.7 sec)

  1. r2_score — scikit-learn 1.7.0 documentation

    Gallery examples: Effect of transforming the targets in regression model Failure of Machine Learning to infer causal effects L1-based models for Sparse Signals Non-negative least squares Ordinary L...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
    Thu Jul 03 11:42:06 UTC 2025
      121.5K bytes
      Cache
     
  2. roc_curve — scikit-learn 1.7.0 documentation

    Gallery examples: Species distribution modeling Visualizations with Display Objects Detection error tradeoff (DET) curve Multiclass Receiver Operating Characteristic (ROC)
    scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
    Thu Jul 03 11:42:05 UTC 2025
      117K bytes
      Cache
     
  3. log_loss — scikit-learn 1.7.0 documentation

    Gallery examples: Probability Calibration curves Probability Calibration for 3-class classification Plot classification probability Gradient Boosting Out-of-Bag estimates Gradient Boosting regulari...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
    Thu Jul 03 11:42:06 UTC 2025
      115.7K bytes
      Cache
     
  4. matthews_corrcoef — scikit-learn 1.7.0 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version matthews_corrcoef # sklearn.metrics. matthews_corrcoe...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
    Thu Jul 03 11:42:05 UTC 2025
      109.2K bytes
      Cache
     
  5. rand_score — scikit-learn 1.7.0 documentation

    Gallery examples: Adjustment for chance in clustering performance evaluation
    scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html
    Thu Jul 03 11:42:06 UTC 2025
      110.6K bytes
      Cache
     
  6. det_curve — scikit-learn 1.7.0 documentation

    Gallery examples: Detection error tradeoff (DET) curve
    scikit-learn.org/stable/modules/generated/sklearn.metrics.det_curve.html
    Thu Jul 03 11:42:05 UTC 2025
      113.8K bytes
      Cache
     
  7. make_moons — scikit-learn 1.7.0 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Comparing anomaly detection algori...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
    Thu Jul 03 11:42:05 UTC 2025
      114.3K bytes
      Cache
     
  8. make_circles — scikit-learn 1.7.0 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Kernel PCA Hashing feature transfo...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
    Thu Jul 03 11:42:06 UTC 2025
      116.2K bytes
      Cache
     
  9. set_config — scikit-learn 1.7.0 documentation

    Gallery examples: Metadata Routing Displaying Pipelines Introducing the set_output API Post-tuning the decision threshold for cost-sensitive learning Target Encoder’s Internal Cross fitting Release...
    scikit-learn.org/stable/modules/generated/sklearn.set_config.html
    Thu Jul 03 11:42:06 UTC 2025
      120.6K bytes
      Cache
     
  10. sklearn.ensemble — scikit-learn 1.7.0 documenta...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Thu Jul 03 11:42:05 UTC 2025
      120.9K bytes
      Cache
     
Back to top