- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 81 - 90 of 1,631 for text (0.11 sec)
-
HashingVectorizer — scikit-learn 1.6.1 document...
classification of text documents Out-of-core classification of text documents...Clustering text documents using k-means Clustering text documents...scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html -
Configurable chunking settings for inference AP...
document ingestion with semantic text fields. Integrations How To...this API is to support semantic text fields used for semantic search...www.elastic.co/search-labs/blog/elasticsearch-chunking-inference-api-endpoints -
What is Retrieval Augmented Generation (RAG)? |...
information to generate text responses. The generated text might go through...a technique that supplements text generation with information...www.elastic.co/what-is/retrieval-augmented-generation -
Using Amazon Nova models in Elasticsearch - Ela...
These models operate with text, image and video inputs, generate...Micro: Focused exclusively on text, this is a fast and cost-effective...www.elastic.co/search-labs/blog/amazon-nova-models-elasticsearch -
6.3. Preprocessing data — scikit-learn 1.6.1 do...
- 1'_{\text{n}_{samples}} K - K_{test} 1_{\text{n}_{samples}}...X_train , X_test , y_train , y_test = train_test_split ( X ,...scikit-learn.org/stable/modules/preprocessing.html -
OpenAI - Elasticsearch Labs
www.elastic.co/search-labs/integrations/open-ai -
New Site Ready for Beta Testing | MetaTalk
just stick with text. I think MetaFilter's text-based interface...URL and Link Text boxes around? Change "Link text" to "Name of...metatalk.metafilter.com/26589/New-Site-Ready-for-Beta-Testing -
How to optimize RAG retrieval in Elastisearch w...
consolidate all test case parameters into a single LLM test case. Running...(leveraging vector embeddings), text-based (using query rules), or...www.elastic.co/search-labs/blog/rag-retrieval-elasticsearch-deepeval -
f1_score — scikit-learn 1.6.1 documentation
\[\text{F1} = \frac{2 * \text{TP}}{2 * \text{TP} + \text{FP}...\text{FP} + \text{FN}}\] Where \(\text{TP}\) is the number of true positives,...scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html -
index.css
sk-landing-subheader { color: white; text-shadow: 0px 0px 8px var(--sk-landing-bg-1);...0.8rem; color: var(--pst-color-text-base); } div.sk-landing-body...scikit-learn.org/stable/_static/styles/index.css