- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 931 - 940 of 1,682 for document (0.09 sec)
-
log_loss — scikit-learn 1.6.1 documentation
Gallery examples: Probability Calibration curves Probability Calibration for 3-class classification Gradient Boosting Out-of-Bag estimates Gradient Boosting regularization Probabilistic predictions...scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html -
dcg_score — scikit-learn 1.6.1 documentation
Skip to main content Back to top Ctrl + K GitHub Choose version dcg_score # sklearn.metrics. dcg_score ( y_true , y_s...scikit-learn.org/stable/modules/generated/sklearn.metrics.dcg_score.html -
sklearn.inspection — scikit-learn 1.6.1 documen...
Tools for model inspection. User guide. See the Inspection section for further details. Plotting:scikit-learn.org/stable/api/sklearn.inspection.html -
coverage_error — scikit-learn 1.6.1 documentation
Skip to main content Back to top Ctrl + K GitHub Choose version coverage_error # sklearn.metrics. coverage_error ( y_...scikit-learn.org/stable/modules/generated/sklearn.metrics.coverage_error.html -
check_cv — scikit-learn 1.6.1 documentation
Skip to main content Back to top Ctrl + K GitHub Choose version check_cv # sklearn.model_selection. check_cv ( cv = 5...scikit-learn.org/stable/modules/generated/sklearn.model_selection.check_cv.html -
plot_tree — scikit-learn 1.6.1 documentation
Gallery examples: Plot the decision surface of decision trees trained on the iris dataset Understanding the decision tree structurescikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html -
sklearn.ensemble — scikit-learn 1.6.1 documenta...
Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.scikit-learn.org/stable/api/sklearn.ensemble.html -
rand_score — scikit-learn 1.6.1 documentation
scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html -
r2_score — scikit-learn 1.6.1 documentation
Gallery examples: L1-based models for Sparse Signals Non-negative least squares Ordinary Least Squares Example Failure of Machine Learning to infer causal effects Effect of transforming the targets...scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html -
sklearn.manifold — scikit-learn 1.6.1 documenta...
Data embedding techniques. User guide. See the Manifold learning section for further details.scikit-learn.org/stable/api/sklearn.manifold.html