Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 911 - 920 of 1,826 for document (0.43 sec)

  1. Univariate Feature Selection — scikit-learn 1.5...

    This notebook is an example of using univariate feature selection to improve classification accuracy on a noisy dataset. In this example, some noisy (non informative) features are added to the iris...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_feature_selection.html
    Sat Nov 23 04:49:16 UTC 2024
      101.4K bytes
      Cache
     
  2. Species distribution modeling — scikit-learn 1....

    Modeling species’ geographic distributions is an important problem in conservation biology. In this example, we model the geographic distribution of two South American mammals given past observatio...
    scikit-learn.org/stable/auto_examples/applications/plot_species_distribution_modeling.html
    Sat Nov 23 04:49:15 UTC 2024
      117.7K bytes
      Cache
     
  3. Digits Classification Exercise — scikit-learn 1...

    A tutorial exercise regarding the use of classification techniques on the Digits dataset. This exercise is used in the clf_tut part of the supervised_learning_tut section of the stat_learn_tut_inde...
    scikit-learn.org/stable/auto_examples/exercises/plot_digits_classification_exercise.html
    Sat Nov 23 04:49:14 UTC 2024
      81.9K bytes
      Cache
     
  4. k_means — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub k_means # sklearn.cluster. k_means ( X , n_clusters , * , sample_wei...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.k_means.html
    Sat Nov 23 04:49:14 UTC 2024
      115.4K bytes
      Cache
     
  5. calibration_curve — scikit-learn 1.5.2 document...

    Skip to main content Back to top Ctrl + K GitHub calibration_curve # sklearn.calibration. calibration_curve ( y_true ...
    scikit-learn.org/stable/modules/generated/sklearn.calibration.calibration_curve.html
    Sat Nov 23 04:49:15 UTC 2024
      109K bytes
      Cache
     
  6. GMM Initialization Methods — scikit-learn 1.5.2...

    Examples of the different methods of initialization in Gaussian Mixture Models See Gaussian mixture models for more information on the estimator. Here we generate some sample data with four easy to...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_init.html
    Sat Nov 23 04:49:14 UTC 2024
      95K bytes
      Cache
     
  7. Support Vector Machines — scikit-learn 1.5.2 do...

    Examples concerning the sklearn.svm module. One-class SVM with non-linear kernel (RBF) Plot classification boundaries with different SVM Kernels Plot different SVM classifiers in the iris dataset P...
    scikit-learn.org/stable/auto_examples/svm/index.html
    Sat Nov 23 04:49:16 UTC 2024
      83.4K bytes
      Cache
     
  8. Kernel Density Estimation — scikit-learn 1.5.2 ...

    This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_digits_kde_sampling.html
    Sat Nov 23 04:49:15 UTC 2024
      89.7K bytes
      Cache
     
  9. SVM with custom kernel — scikit-learn 1.5.2 doc...

    Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. Total running time of the script:(0 minutes 0.093 seconds) Launch binder Lau...
    scikit-learn.org/stable/auto_examples/svm/plot_custom_kernel.html
    Sat Nov 23 04:49:14 UTC 2024
      84.8K bytes
      Cache
     
  10. config_context — scikit-learn 1.5.2 documentation

    Gallery examples: Introducing the set_output API
    scikit-learn.org/stable/modules/generated/sklearn.config_context.html
    Sat Nov 23 04:49:14 UTC 2024
      115.6K bytes
      Cache
     
Back to top