Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 911 - 920 of 3,496 for document (2.42 seconds)

  1. Kernel PCA — scikit-learn 1.8.0 documenta...

    This example shows the difference between the Principal Components Analysis ( PCA) and its kernelized version ( KernelPCA). On the one hand, we show that KernelPCA is able to find a projection of t...
    scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html
    Mon Jan 19 11:28:25 GMT 2026
      107.2K bytes
      Cache
     
  2. sklearn.cluster — scikit-learn 1.8.0 docu...

    Popular unsupervised clustering algorithms. User guide. See the Clustering and Biclustering sections for further details.
    scikit-learn.org/stable/api/sklearn.cluster.html
    Mon Jan 19 11:28:23 GMT 2026
      123.9K bytes
      Cache
     
  3. sklearn.decomposition — scikit-learn 1.8....

    Matrix decomposition algorithms. These include PCA, NMF, ICA, and more. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. User guide. See the Decomposing...
    scikit-learn.org/stable/api/sklearn.decomposition.html
    Mon Jan 19 11:28:23 GMT 2026
      121.9K bytes
      Cache
     
  4. sklearn.calibration — scikit-learn 1.8.0 ...

    Methods for calibrating predicted probabilities. User guide. See the Probability calibration section for further details. Visualization:
    scikit-learn.org/stable/api/sklearn.calibration.html
    Mon Jan 19 11:28:23 GMT 2026
      115.9K bytes
      Cache
     
  5. 9.1. Strategies to scale computationally: bigge...

    beyond the scope of this documentation. 9.1.1.2. Extracting features...shingVectorizer for text documents. 9.1.1.3. Incremental learning...
    scikit-learn.org/stable/computing/scaling_strategies.html
    Mon Jan 19 11:28:25 GMT 2026
      45.4K bytes
      Cache
     
  6. 5. Inspection — scikit-learn 1.8.0 docume...

    Predictive performance is often the main goal of developing machine learning models. Yet summarizing performance with an evaluation metric is often insufficient: it assumes that the evaluation metr...
    scikit-learn.org/stable/inspection.html
    Mon Jan 19 11:28:23 GMT 2026
      32.8K bytes
      Cache
     
  7. 12. Dispatching — scikit-learn 1.8.0 docu...

    Array API support (experimental)- Enabling array API support, Example usage, Support for Array API-compatible inputs, Input and output array type handling, Common estimator checks..
    scikit-learn.org/stable/dispatching.html
    Mon Jan 19 11:28:24 GMT 2026
      30.9K bytes
      Cache
     
  8. Release Highlights — scikit-learn 1.8.0 d...

    These examples illustrate the main features of the releases of scikit-learn. Release Highlights for scikit-learn 1.8 Release Highlights for scikit-learn 1.7 Release Highlights for scikit-learn 1.6 ...
    scikit-learn.org/stable/auto_examples/release_highlights/index.html
    Mon Jan 19 11:28:24 GMT 2026
      80.4K bytes
      Cache
     
  9. Cross decomposition — scikit-learn 1.8.0 ...

    Examples concerning the sklearn.cross_decomposition module. Compare cross decomposition methods Principal Component Regression vs Partial Least Squares Regression
    scikit-learn.org/stable/auto_examples/cross_decomposition/index.html
    Mon Jan 19 11:28:25 GMT 2026
      74.1K bytes
      Cache
     
  10. Inductive Clustering — scikit-learn 1.8.0...

    Clustering can be expensive, especially when our dataset contains millions of datapoints. Many clustering algorithms are not inductive and so cannot be directly applied to new data samples without ...
    scikit-learn.org/stable/auto_examples/cluster/plot_inductive_clustering.html
    Mon Jan 19 11:28:23 GMT 2026
      101.6K bytes
      Cache
     
Back to Top