Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 881 - 890 of 3,628 for document (0.82 seconds)

  1. 12. Dispatching — scikit-learn 1.8.0 docu...

    Array API support (experimental)- Enabling array API support, Example usage, Support for Array API-compatible inputs, Input and output array type handling, Common estimator checks..
    scikit-learn.org/stable/dispatching.html
    Mon Jan 26 11:09:14 GMT 2026
      30.9K bytes
      Cache
     
  2. Getting Started — scikit-learn 1.8.0 docu...

    Scikit-learn is an open source machine learning library that supports supervised and unsupervised learning. It also provides various tools for model fitting, data preprocessing, model selection, mo...
    scikit-learn.org/stable/getting_started.html
    Mon Feb 02 09:23:44 GMT 2026
      49.8K bytes
      Cache
     
  3. sklearn.metrics — scikit-learn 1.8.0 docu...

    Score functions, performance metrics, pairwise metrics and distance computations. User guide. See the Metrics and scoring: quantifying the quality of predictions and Pairwise metrics, Affinities an...
    scikit-learn.org/stable/api/sklearn.metrics.html
    Mon Feb 02 09:23:44 GMT 2026
      160.5K bytes
      Cache
     
  4. sklearn.model_selection — scikit-learn 1....

    Tools for model selection, such as cross validation and hyper-parameter tuning. User guide. See the Cross-validation: evaluating estimator performance, Tuning the hyper-parameters of an estimator, ...
    scikit-learn.org/stable/api/sklearn.model_selection.html
    Mon Feb 02 09:23:44 GMT 2026
      129.5K bytes
      Cache
     
  5. sklearn.preprocessing — scikit-learn 1.8....

    Methods for scaling, centering, normalization, binarization, and more. User guide. See the Preprocessing data section for further details.
    scikit-learn.org/stable/api/sklearn.preprocessing.html
    Mon Feb 02 09:23:44 GMT 2026
      125.8K bytes
      Cache
     
  6. sklearn.neural_network — scikit-learn 1.8...

    Models based on neural networks. User guide. See the Neural network models (supervised) and Neural network models (unsupervised) sections for further details.
    scikit-learn.org/stable/api/sklearn.neural_network.html
    Mon Feb 02 09:23:44 GMT 2026
      115.7K bytes
      Cache
     
  7. Inductive Clustering — scikit-learn 1.8.0...

    Clustering can be expensive, especially when our dataset contains millions of datapoints. Many clustering algorithms are not inductive and so cannot be directly applied to new data samples without ...
    scikit-learn.org/stable/auto_examples/cluster/plot_inductive_clustering.html
    Mon Feb 02 09:23:44 GMT 2026
      101.6K bytes
      Cache
     
  8. Release Highlights — scikit-learn 1.8.0 d...

    These examples illustrate the main features of the releases of scikit-learn. Release Highlights for scikit-learn 1.8 Release Highlights for scikit-learn 1.7 Release Highlights for scikit-learn 1.6 ...
    scikit-learn.org/stable/auto_examples/release_highlights/index.html
    Mon Feb 02 09:23:44 GMT 2026
      80.4K bytes
      Cache
     
  9. Cross decomposition — scikit-learn 1.8.0 ...

    Examples concerning the sklearn.cross_decomposition module. Compare cross decomposition methods Principal Component Regression vs Partial Least Squares Regression
    scikit-learn.org/stable/auto_examples/cross_decomposition/index.html
    Mon Feb 02 09:23:44 GMT 2026
      74.1K bytes
      Cache
     
  10. Frozen Estimators — scikit-learn 1.8.0 do...

    Examples concerning the sklearn.frozen module. Examples of Using FrozenEstimator
    scikit-learn.org/stable/auto_examples/frozen/index.html
    Mon Feb 02 09:23:44 GMT 2026
      73.2K bytes
      Cache
     
Back to Top