Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 881 - 890 of 3,301 for document (1.11 seconds)

  1. sklearn.impute — scikit-learn 1.8.0 docum...

    Transformers for missing value imputation. User guide. See the Imputation of missing values section for further details.
    scikit-learn.org/stable/api/sklearn.impute.html
    Mon Dec 29 13:14:48 GMT 2025
      115.7K bytes
      Cache
     
  2. sklearn.gaussian_process — scikit-learn 1...

    Gaussian process based regression and classification. User guide. See the Gaussian Processes section for further details. Kernels: A set of kernels that can be combined by operators and used in Gau...
    scikit-learn.org/stable/api/sklearn.gaussian_process.html
    Mon Dec 29 13:14:48 GMT 2025
      122.1K bytes
      Cache
     
  3. sklearn.isotonic — scikit-learn 1.8.0 doc...

    Isotonic regression for obtaining monotonic fit to data. User guide. See the Isotonic regression section for further details.
    scikit-learn.org/stable/api/sklearn.isotonic.html
    Mon Dec 29 13:14:48 GMT 2025
      115.4K bytes
      Cache
     
  4. sklearn.compose — scikit-learn 1.8.0 docu...

    Meta-estimators for building composite models with transformers. In addition to its current contents, this module will eventually be home to refurbished versions of Pipeline and FeatureUnion. User ...
    scikit-learn.org/stable/api/sklearn.compose.html
    Mon Dec 29 13:14:48 GMT 2025
      116.9K bytes
      Cache
     
  5. GMM covariances — scikit-learn 1.8.0 docu...

    Demonstration of several covariances types for Gaussian mixture models. See Gaussian mixture models for more information on the estimator. Although GMM are often used for clustering, we can compare...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html
    Mon Dec 29 13:14:48 GMT 2025
      108.2K bytes
      Cache
     
  6. Developing Estimators — scikit-learn 1.8....

    Examples concerning the development of Custom Estimator.__sklearn_is_fitted__ as Developer API
    scikit-learn.org/stable/auto_examples/developing_estimators/index.html
    Mon Dec 29 13:14:48 GMT 2025
      73.3K bytes
      Cache
     
  7. Incremental PCA — scikit-learn 1.8.0 docu...

    Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA build...
    scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html
    Mon Dec 29 13:14:48 GMT 2025
      91.3K bytes
      Cache
     
  8. Feature discretization — scikit-learn 1.8...

    A demonstration of feature discretization on synthetic classification datasets. Feature discretization decomposes each feature into a set of bins, here equally distributed in width. The discrete va...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_classification.html
    Mon Dec 29 13:14:49 GMT 2025
      128.5K bytes
      Cache
     
  9. Kernel Approximation — scikit-learn 1.8.0...

    Examples concerning the sklearn.kernel_approximation module. Scalable learning with polynomial kernel approximation
    scikit-learn.org/stable/auto_examples/kernel_approximation/index.html
    Mon Dec 29 13:14:48 GMT 2025
      73.7K bytes
      Cache
     
  10. 1.17. Neural network models (supervised) &#8212...

    details can be found in the documentation of SGD Adam is similar to...
    scikit-learn.org/stable/modules/neural_networks_supervised.html
    Mon Dec 29 13:14:48 GMT 2025
      66.9K bytes
      Cache
     
Back to Top