Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Popular Words: 機能 pro d url xml demo mit top cisco test

Results 861 - 870 of 3,423 for document (0.84 seconds)

  1. Developing Estimators — scikit-learn 1.7....

    Examples concerning the development of Custom Estimator.__sklearn_is_fitted__ as Developer API
    scikit-learn.org/stable/auto_examples/developing_estimators/index.html
    Fri Dec 05 17:52:54 GMT 2025
      73.4K bytes
      Cache
     
  2. Incremental PCA — scikit-learn 1.7.2 docu...

    Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA build...
    scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html
    Fri Dec 05 17:52:54 GMT 2025
      91.5K bytes
      Cache
     
  3. Logistic function — scikit-learn 1.7.2 do...

    Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logistic curve. Total running time of the scrip...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic.html
    Fri Dec 05 17:52:55 GMT 2025
      95K bytes
      Cache
     
  4. Kernel Approximation — scikit-learn 1.7.2...

    Examples concerning the sklearn.kernel_approximation module. Scalable learning with polynomial kernel approximation
    scikit-learn.org/stable/auto_examples/kernel_approximation/index.html
    Fri Dec 05 17:52:54 GMT 2025
      73.7K bytes
      Cache
     
  5. GMM covariances — scikit-learn 1.7.2 docu...

    Demonstration of several covariances types for Gaussian mixture models. See Gaussian mixture models for more information on the estimator. Although GMM are often used for clustering, we can compare...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html
    Fri Dec 05 17:52:55 GMT 2025
      108.4K bytes
      Cache
     
  6. 1.13. Feature selection — scikit-learn 1....

    The classes in the sklearn.feature_selection module can be used for feature selection/dimensionality reduction on sample sets, either to improve estimators’ accuracy scores or to boost their perfor...
    scikit-learn.org/stable/modules/feature_selection.html
    Fri Dec 05 17:52:54 GMT 2025
      73.8K bytes
      Cache
     
  7. 7.3. Preprocessing data — scikit-learn 1....

    The sklearn.preprocessing package provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream esti...
    scikit-learn.org/stable/modules/preprocessing.html
    Fri Dec 05 17:52:54 GMT 2025
      198.2K bytes
      Cache
     
  8. 1.10. Decision Trees — scikit-learn 1.7.2...

    Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning s...
    scikit-learn.org/stable/modules/tree.html
    Fri Dec 05 17:52:55 GMT 2025
      94.5K bytes
      Cache
     
  9. 1.16. Probability calibration — scikit-le...

    When performing classification you often want not only to predict the class label, but also obtain a probability of the respective label. This probability gives you some kind of confidence on the p...
    scikit-learn.org/stable/modules/calibration.html
    Fri Dec 05 17:52:54 GMT 2025
      63.3K bytes
      Cache
     
  10. Demonstrating the different strategies of KBins...

    This example presents the different strategies implemented in KBinsDiscretizer: ‘uniform’: The discretization is uniform in each feature, which means that the bin widths are constant in each dimens...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_strategies.html
    Fri Dec 05 17:52:54 GMT 2025
      100.7K bytes
      Cache
     
Back to Top