Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 791 - 800 of 1,826 for document (0.22 sec)

  1. Importance of Feature Scaling — scikit-learn 1....

    Feature scaling through standardization, also called Z-score normalization, is an important preprocessing step for many machine learning algorithms. It involves rescaling each feature such that it ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
    Sat Nov 23 04:49:14 UTC 2024
      117.9K bytes
      Cache
     
  2. make_moons — scikit-learn 1.5.2 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Comparing anomaly detection algori...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
    Sat Nov 23 04:49:15 UTC 2024
      113.3K bytes
      Cache
     
  3. set_config — scikit-learn 1.5.2 documentation

    Gallery examples: Release Highlights for scikit-learn 1.4 Release Highlights for scikit-learn 0.23 Displaying Pipelines Introducing the set_output API Metadata Routing Post-tuning the decision thre...
    scikit-learn.org/stable/modules/generated/sklearn.set_config.html
    Sat Nov 23 04:49:16 UTC 2024
      118.9K bytes
      Cache
     
  4. sklearn.covariance — scikit-learn 1.5.2 documen...

    Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. C...
    scikit-learn.org/stable/api/sklearn.covariance.html
    Sat Nov 23 04:49:16 UTC 2024
      118.5K bytes
      Cache
     
  5. make_circles — scikit-learn 1.5.2 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Kernel PCA Hashing feature transfo...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
    Sat Nov 23 04:49:15 UTC 2024
      115.2K bytes
      Cache
     
  6. Pipelines and composite estimators — scikit-lea...

    Examples of how to compose transformers and pipelines from other estimators. See the User Guide. Column Transformer with Heterogeneous Data Sources Column Transformer with Mixed Types Concatenating...
    scikit-learn.org/stable/auto_examples/compose/index.html
    Sat Nov 23 04:49:14 UTC 2024
      79.6K bytes
      Cache
     
  7. Nearest Centroid Classification — scikit-learn ...

    Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.,., Total running time of the script:(0 minutes 0.156 seconds) Launch binder Launch JupyterLite ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html
    Sat Nov 23 04:49:16 UTC 2024
      86.5K bytes
      Cache
     
  8. load_files — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub load_files # sklearn.datasets. load_files ( container_path , * , des...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_files.html
    Sat Nov 23 04:49:14 UTC 2024
      111.1K bytes
      Cache
     
  9. make_checkerboard — scikit-learn 1.5.2 document...

    Gallery examples: A demo of the Spectral Biclustering algorithm
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_checkerboard.html
    Sat Nov 23 04:49:16 UTC 2024
      110.8K bytes
      Cache
     
  10. mean_shift — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub mean_shift # sklearn.cluster. mean_shift ( X , * , bandwidth = None ...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.mean_shift.html
    Sat Nov 23 04:49:14 UTC 2024
      110.9K bytes
      Cache
     
Back to top