Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 771 - 780 of 3,496 for document (7.49 seconds)

  1. Release Highlights for scikit-learn 1.3 —...

    We are pleased to announce the release of scikit-learn 1.3! Many bug fixes and improvements were added, as well as some new key features. We detail below a few of the major features of this release...
    scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_3_0.html
    Mon Jan 19 11:28:23 GMT 2026
      116.4K bytes
      Cache
     
  2. Gaussian Processes regression: basic introducto...

    A simple one-dimensional regression example computed in two different ways: A noise-free case, A noisy case with known noise-level per datapoint. In both cases, the kernel’s parameters are estimate...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html
    Mon Jan 19 11:28:24 GMT 2026
      107.3K bytes
      Cache
     
  3. Robust linear model estimation using RANSAC &#8...

    In this example, we see how to robustly fit a linear model to faulty data using the RANSAC algorithm. The ordinary linear regressor is sensitive to outliers, and the fitted line can easily be skewe...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ransac.html
    Mon Jan 19 11:28:24 GMT 2026
      93.1K bytes
      Cache
     
  4. MNIST classification using multinomial logistic...

    Here we fit a multinomial logistic regression with L1 penalty on a subset of the MNIST digits classification task. We use the SAGA algorithm for this purpose: this a solver that is fast when the nu...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html
    Mon Jan 19 11:28:23 GMT 2026
      96.2K bytes
      Cache
     
  5. Comparison between grid search and successive h...

    This example compares the parameter search performed by HalvingGridSearchCV and GridSearchCV. We first define the parameter space for an SVC estimator, and compute the time required to train a Halv...
    scikit-learn.org/stable/auto_examples/model_selection/plot_successive_halving_heatmap.html
    Mon Jan 19 11:28:24 GMT 2026
      105.8K bytes
      Cache
     
  6. Class Likelihood Ratios to measure classificati...

    This example demonstrates the class_likelihood_ratios function, which computes the positive and negative likelihood ratios ( LR+, LR-) to assess the predictive power of a binary classifier. As we w...
    scikit-learn.org/stable/auto_examples/model_selection/plot_likelihood_ratios.html
    Mon Jan 19 11:28:25 GMT 2026
      143.1K bytes
      Cache
     
  7. Compare the effect of different scalers on data...

    Feature 0 (median income in a block) and feature 5 (average house occupancy) of the California Housing dataset have very different scales and contain some very large outliers. These two characteris...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
    Mon Jan 19 11:28:24 GMT 2026
      137.9K bytes
      Cache
     
  8. SVM-Anova: SVM with univariate feature selectio...

    This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to improve the classification scores. We use the iris dataset (4 features) and add 36...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_anova.html
    Mon Jan 19 11:28:25 GMT 2026
      95.5K bytes
      Cache
     
  9. 5.2. Permutation feature importance — sci...

    as documented in Using multiple metric...
    scikit-learn.org/stable/modules/permutation_importance.html
    Mon Jan 19 11:28:23 GMT 2026
      56.3K bytes
      Cache
     
  10. Empirical evaluation of the impact of k-means i...

    text documents using k-means Clustering text documents using...
    scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_stability_low_dim_dense.html
    Mon Jan 19 11:28:24 GMT 2026
      105.7K bytes
      Cache
     
Back to Top