Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 761 - 770 of 1,549 for document (1.05 sec)

  1. Incremental PCA — scikit-learn 1.7.1 documentation

    Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA build...
    scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html
    Sat Aug 23 16:32:03 UTC 2025
      91.5K bytes
      Cache
     
  2. Kernel Approximation — scikit-learn 1.7.1 docum...

    Examples concerning the sklearn.kernel_approximation module. Scalable learning with polynomial kernel approximation
    scikit-learn.org/stable/auto_examples/kernel_approximation/index.html
    Sat Aug 23 16:32:04 UTC 2025
      73.7K bytes
      Cache
     
  3. Classifier comparison — scikit-learn 1.7.1 docu...

    A comparison of several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be take...
    scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
    Sat Aug 23 16:32:04 UTC 2025
      114.3K bytes
      Cache
     
  4. Covariance estimation — scikit-learn 1.7.1 docu...

    Examples concerning the sklearn.covariance module. Ledoit-Wolf vs OAS estimation Robust covariance estimation and Mahalanobis distances relevance Robust vs Empirical covariance estimate Shrinkage c...
    scikit-learn.org/stable/auto_examples/covariance/index.html
    Sat Aug 23 16:32:03 UTC 2025
      76.5K bytes
      Cache
     
  5. Logistic function — scikit-learn 1.7.1 document...

    Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logistic curve. Total running time of the scrip...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic.html
    Sat Aug 23 16:32:03 UTC 2025
      95K bytes
      Cache
     
  6. Feature discretization — scikit-learn 1.7.1 doc...

    A demonstration of feature discretization on synthetic classification datasets. Feature discretization decomposes each feature into a set of bins, here equally distributed in width. The discrete va...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_classification.html
    Sat Aug 23 16:32:04 UTC 2025
      128.7K bytes
      Cache
     
  7. check_consistent_length — scikit-learn 1.7.1 do...

    Skip to main content Back to top Ctrl + K GitHub Choose version check_consistent_length # sklearn.utils. check_consis...
    scikit-learn.org/stable/modules/generated/sklearn.utils.check_consistent_length.html
    Fri Aug 22 18:00:34 UTC 2025
      105.6K bytes
      1 views
      Cache
     
  8. inplace_swap_column — scikit-learn 1.7.1 docume...

    Skip to main content Back to top Ctrl + K GitHub Choose version inplace_swap_column # sklearn.utils.sparsefuncs. inpl...
    scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.inplace_swap_column.html
    Fri Aug 22 18:00:33 UTC 2025
      108K bytes
      Cache
     
  9. safe_sparse_dot — scikit-learn 1.7.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version safe_sparse_dot # sklearn.utils.extmath. safe_sparse_...
    scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.safe_sparse_dot.html
    Fri Aug 22 18:00:29 UTC 2025
      107.2K bytes
      Cache
     
  10. estimator_checks_generator — scikit-learn 1.7.1...

    Skip to main content Back to top Ctrl + K GitHub Choose version estimator_checks_generator # sklearn.utils.estimator_...
    scikit-learn.org/stable/modules/generated/sklearn.utils.estimator_checks.estimator_checks_generat...
    Fri Aug 22 18:00:33 UTC 2025
      109.7K bytes
      Cache
     
Back to top