Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 741 - 750 of 1,549 for document (0.37 sec)

  1. ShuffleSplit — scikit-learn 1.7.1 documentation

    Gallery examples: Visualizing cross-validation behavior in scikit-learn Balance model complexity and cross-validated score Plotting Learning Curves and Checking Models’ Scalability Scaling the regu...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html
    Sat Aug 23 16:32:04 UTC 2025
      124.6K bytes
      Cache
     
  2. StratifiedShuffleSplit — scikit-learn 1.7.1 doc...

    Gallery examples: Visualizing cross-validation behavior in scikit-learn RBF SVM parameters
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html
    Sat Aug 23 16:32:04 UTC 2025
      122.5K bytes
      Cache
     
  3. GroupShuffleSplit — scikit-learn 1.7.1 document...

    Gallery examples: Visualizing cross-validation behavior in scikit-learn
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupShuffleSplit.html
    Sat Aug 23 16:32:04 UTC 2025
      128.2K bytes
      Cache
     
  4. inplace_csr_row_normalize_l1 — scikit-learn 1.7...

    Skip to main content Back to top Ctrl + K GitHub Choose version inplace_csr_row_normalize_l1 # sklearn.utils.sparsefu...
    scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs_fast.inplace_csr_row_normaliz...
    Mon Aug 18 14:44:58 UTC 2025
      107.8K bytes
      Cache
     
  5. t-SNE: The effect of various perplexity values ...

    An illustration of t-SNE on the two concentric circles and the S-curve datasets for different perplexity values. We observe a tendency towards clearer shapes as the perplexity value increases. The ...
    scikit-learn.org/stable/auto_examples/manifold/plot_t_sne_perplexity.html
    Sat Aug 23 16:32:03 UTC 2025
      109.6K bytes
      Cache
     
  6. Illustration of Gaussian process classification...

    This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains consi...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_xor.html
    Sat Aug 23 16:32:04 UTC 2025
      97.6K bytes
      Cache
     
  7. Model selection with Probabilistic PCA and Fact...

    Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and...
    scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_fa_model_selection.html
    Sat Aug 23 16:32:03 UTC 2025
      110.5K bytes
      Cache
     
  8. 7.8. Pairwise metrics, Affinities and Kernels —...

    computing the similarity of documents represented as tf-idf vectors....-ouvertes.fr/hal-00171412/document On this page This Page...
    scikit-learn.org/stable/modules/metrics.html
    Sat Aug 23 16:32:04 UTC 2025
      55.4K bytes
      Cache
     
  9. is_outlier_detector — scikit-learn 1.7.1 docume...

    Skip to main content Back to top Ctrl + K GitHub Choose version is_outlier_detector # sklearn.base. is_outlier_detect...
    scikit-learn.org/stable/modules/generated/sklearn.base.is_outlier_detector.html
    Sat Aug 23 16:32:04 UTC 2025
      104.5K bytes
      Cache
     
  10. Robust linear estimator fitting — scikit-learn ...

    Here a sine function is fit with a polynomial of order 3, for values close to zero. Robust fitting is demonstrated in different situations: No measurement errors, only modelling errors (fitting a s...
    scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html
    Sat Aug 23 16:32:04 UTC 2025
      101.5K bytes
      Cache
     
Back to top