Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 711 - 720 of 1,682 for document (0.54 sec)

  1. Comparison of LDA and PCA 2D projection of Iris...

    The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA)...
    scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html
    Sat Apr 19 00:31:22 UTC 2025
      93K bytes
      Cache
     
  2. 6.1. Pipelines and composite estimators — sciki...

    To build a composite estimator, transformers are usually combined with other transformers or with predictors(such as classifiers or regressors). The most common tool used for composing estimators i...
    scikit-learn.org/stable/modules/compose.html
    Sat Apr 19 00:31:21 UTC 2025
      110.8K bytes
      Cache
     
  3. 13. External Resources, Videos and Talks — scik...

    New to Scientific Python?: For those that are still new to the scientific Python ecosystem, we highly recommend the Python Scientific Lecture Notes. This will help you find your footing a bit and w...
    scikit-learn.org/stable/presentations.html
    Sat Apr 19 00:31:22 UTC 2025
      34.9K bytes
      Cache
     
  4. top_k_accuracy_score — scikit-learn 1.6.1 docum...

    Skip to main content Back to top Ctrl + K GitHub Choose version top_k_accuracy_score # sklearn.metrics. top_k_accurac...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.top_k_accuracy_score.html
    Sat Apr 19 00:31:21 UTC 2025
      112.9K bytes
      1 views
      Cache
     
  5. An example of K-Means++ initialization — scikit...

    An example to show the output of the sklearn.cluster.kmeans_plusplus function for generating initial seeds for clustering. K-Means++ is used as the default initialization for K-means. Total running...
    scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_plusplus.html
    Sat Apr 19 00:31:22 UTC 2025
      88.4K bytes
      Cache
     
  6. mean_squared_log_error — scikit-learn 1.6.1 doc...

    Skip to main content Back to top Ctrl + K GitHub Choose version mean_squared_log_error # sklearn.metrics. mean_square...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html
    Sat Apr 19 00:31:21 UTC 2025
      110K bytes
      Cache
     
  7. homogeneity_completeness_v_measure — scikit-lea...

    Skip to main content Back to top Ctrl + K GitHub Choose version homogeneity_completeness_v_measure # sklearn.metrics....
    scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html
    Sat Apr 19 00:31:22 UTC 2025
      110.9K bytes
      Cache
     
  8. make_sparse_spd_matrix — scikit-learn 1.6.1 doc...

    Gallery examples: Sparse inverse covariance estimation
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_spd_matrix.html
    Sat Apr 19 00:31:22 UTC 2025
      111.3K bytes
      Cache
     
  9. root_mean_squared_error — scikit-learn 1.6.1 do...

    Gallery examples: Features in Histogram Gradient Boosting Trees Lagged features for time series forecasting
    scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_error.html
    Sat Apr 19 00:31:22 UTC 2025
      111.5K bytes
      Cache
     
  10. johnson_lindenstrauss_min_dim — scikit-learn 1....

    Gallery examples: The Johnson-Lindenstrauss bound for embedding with random projections
    scikit-learn.org/stable/modules/generated/sklearn.random_projection.johnson_lindenstrauss_min_dim...
    Sat Apr 19 00:31:22 UTC 2025
      111.4K bytes
      Cache
     
Back to top