Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 701 - 710 of 1,682 for document (0.23 sec)

  1. sklearn.kernel_approximation — scikit-learn 1.6...

    Approximate kernel feature maps based on Fourier transforms and count sketches. User guide. See the Kernel Approximation section for further details.
    scikit-learn.org/stable/api/sklearn.kernel_approximation.html
    Mon Apr 21 17:07:39 UTC 2025
      116.6K bytes
      Cache
     
  2. sklearn.naive_bayes — scikit-learn 1.6.1 docume...

    Naive Bayes algorithms. These are supervised learning methods based on applying Bayes’ theorem with strong (naive) feature independence assumptions. User guide. See the Naive Bayes section for furt...
    scikit-learn.org/stable/api/sklearn.naive_bayes.html
    Mon Apr 21 17:07:38 UTC 2025
      116.4K bytes
      Cache
     
  3. Prediction Intervals for Gradient Boosting Regr...

    This example shows how quantile regression can be used to create prediction intervals. See Features in Histogram Gradient Boosting Trees for an example showcasing some other features of HistGradien...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html
    Mon Apr 21 17:07:39 UTC 2025
      142.2K bytes
      Cache
     
  4. multilabel_confusion_matrix — scikit-learn 1.6....

    Skip to main content Back to top Ctrl + K GitHub Choose version multilabel_confusion_matrix # sklearn.metrics. multil...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html
    Mon Apr 21 17:07:39 UTC 2025
      113.5K bytes
      Cache
     
  5. label_ranking_loss — scikit-learn 1.6.1 documen...

    Skip to main content Back to top Ctrl + K GitHub Choose version label_ranking_loss # sklearn.metrics. label_ranking_l...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.label_ranking_loss.html
    Mon Apr 21 17:07:39 UTC 2025
      108.8K bytes
      Cache
     
  6. sklearn.random_projection — scikit-learn 1.6.1 ...

    Random projection transformers. Random projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional ...
    scikit-learn.org/stable/api/sklearn.random_projection.html
    Mon Apr 21 17:07:39 UTC 2025
      117K bytes
      Cache
     
  7. Robust vs Empirical covariance estimate — sciki...

    The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarant...
    scikit-learn.org/stable/auto_examples/covariance/plot_robust_vs_empirical_covariance.html
    Mon Apr 21 17:07:39 UTC 2025
      117.4K bytes
      Cache
     
  8. Gaussian Mixture Model Sine Curve — scikit-lear...

    This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset is formed by 100 points loosely spaced fo...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_sin.html
    Mon Apr 21 17:07:38 UTC 2025
      113.8K bytes
      Cache
     
  9. Lagged features for time series forecasting — s...

    This example demonstrates how Polars-engineered lagged features can be used for time series forecasting with HistGradientBoostingRegressor on the Bike Sharing Demand dataset. See the example on Tim...
    scikit-learn.org/stable/auto_examples/applications/plot_time_series_lagged_features.html
    Mon Apr 21 17:07:38 UTC 2025
      162K bytes
      Cache
     
  10. Imputing missing values with variants of Iterat...

    The IterativeImputer class is very flexible - it can be used with a variety of estimators to do round-robin regression, treating every variable as an output in turn. In this example we compare some...
    scikit-learn.org/stable/auto_examples/impute/plot_iterative_imputer_variants_comparison.html
    Mon Apr 21 17:07:39 UTC 2025
      111.6K bytes
      Cache
     
Back to top