Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 671 - 680 of 1,549 for document (0.66 sec)

  1. Neural Networks — scikit-learn 1.7.1 documentation

    Examples concerning the sklearn.neural_network module. Compare Stochastic learning strategies for MLPClassifier Restricted Boltzmann Machine features for digit classification Varying regularization...
    scikit-learn.org/stable/auto_examples/neural_networks/index.html
    Sat Aug 23 16:32:03 UTC 2025
      75.8K bytes
      1 views
      Cache
     
  2. is_regressor — scikit-learn 1.7.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version is_regressor # sklearn.base. is_regressor ( estimator...
    scikit-learn.org/stable/modules/generated/sklearn.base.is_regressor.html
    Sat Aug 23 16:32:04 UTC 2025
      106.2K bytes
      Cache
     
  3. ConfusionMatrixDisplay — scikit-learn 1.7.1 doc...

    performance Classification of text documents using sparse features Classification...Classification of text documents using sparse features On this page...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html
    Sat Aug 23 16:32:03 UTC 2025
      150.1K bytes
      Cache
     
  4. Plot classification boundaries with different S...

    This example shows how different kernels in a SVC(Support Vector Classifier) influence the classification boundaries in a binary, two-dimensional classification problem. SVCs aim to find a hyperpla...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
    Sat Aug 23 16:32:04 UTC 2025
      122.7K bytes
      Cache
     
  5. 1.15. Isotonic regression — scikit-learn 1.7.1 ...

    The class IsotonicRegression fits a non-decreasing real function to 1-dimensional data. It solves the following problem:\min \sum_i w_i (y_i - \hat{y}_i)^2 subject to\hat{y}_i \le \hat{y}_j wheneve...
    scikit-learn.org/stable/modules/isotonic.html
    Sat Aug 23 16:32:04 UTC 2025
      32.9K bytes
      1 views
      Cache
     
  6. Comparison of F-test and mutual information — s...

    This example illustrates the differences between univariate F-test statistics and mutual information. We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on t...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html
    Sat Aug 23 16:32:03 UTC 2025
      91.6K bytes
      Cache
     
  7. SGD: Maximum margin separating hyperplane — sci...

    Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. Total running time of the script:(0 minutes 0...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_separating_hyperplane.html
    Sat Aug 23 16:32:03 UTC 2025
      90.8K bytes
      Cache
     
  8. 7.7. Kernel Approximation — scikit-learn 1.7.1 ...

    This submodule contains functions that approximate the feature mappings that correspond to certain kernels, as they are used for example in support vector machines (see Support Vector Machines). Th...
    scikit-learn.org/stable/modules/kernel_approximation.html
    Sat Aug 23 16:32:04 UTC 2025
      62.2K bytes
      1 views
      Cache
     
  9. 11. Common pitfalls and recommended practices —...

    The purpose of this chapter is to illustrate some common pitfalls and anti-patterns that occur when using scikit-learn. It provides examples of what not to do, along with a corresponding correct ex...
    scikit-learn.org/stable/common_pitfalls.html
    Sat Aug 23 16:32:03 UTC 2025
      102.8K bytes
      Cache
     
  10. 1.8. Cross decomposition — scikit-learn 1.7.1 d...

    The cross decomposition module contains supervised estimators for dimensionality reduction and regression, belonging to the “Partial Least Squares” family. Cross decomposition algorithms find the f...
    scikit-learn.org/stable/modules/cross_decomposition.html
    Sat Aug 23 16:32:04 UTC 2025
      55.5K bytes
      Cache
     
Back to top