Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 641 - 650 of 3,496 for document (3.62 seconds)

  1. Imputing missing values before building an esti...

    Missing values can be replaced by the mean, the median or the most frequent value using the basic SimpleImputer. In this example we will investigate different imputation techniques: imputation by t...
    scikit-learn.org/stable/auto_examples/impute/plot_missing_values.html
    Mon Jan 19 11:28:25 GMT 2026
      120.8K bytes
      Cache
     
  2. Plot different SVM classifiers in the iris data...

    Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: Sepal length, Sepal width. This example shows how to pl...
    scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html
    Mon Jan 19 11:28:25 GMT 2026
      92.5K bytes
      Cache
     
  3. 9.2. Computational Performance — scikit-l...

    Scipy’s sparse matrix formats documentation for more information on...beyond the scope of this documentation though. 9.2.3. Tips and...
    scikit-learn.org/stable/computing/computational_performance.html
    Mon Jan 19 11:28:25 GMT 2026
      60.9K bytes
      Cache
     
  4. Single estimator versus bagging: bias-variance ...

    This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. In regression, the expected mean squared e...
    scikit-learn.org/stable/auto_examples/ensemble/plot_bias_variance.html
    Mon Jan 19 11:28:24 GMT 2026
      115.4K bytes
      Cache
     
  5. Illustration of prior and posterior Gaussian pr...

    This example illustrates the prior and posterior of a GaussianProcessRegressor with different kernels. Mean, standard deviation, and 5 samples are shown for both prior and posterior distributions. ...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
    Mon Jan 19 11:28:23 GMT 2026
      135.5K bytes
      Cache
     
  6. Compressive sensing: tomography reconstruction ...

    This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles. Such a dataset is acquired in computed tomography(CT). Without any prior infor...
    scikit-learn.org/stable/auto_examples/applications/plot_tomography_l1_reconstruction.html
    Mon Jan 19 11:28:24 GMT 2026
      112.5K bytes
      Cache
     
  7. 1.3. Kernel ridge regression — scikit-lea...

    Kernel ridge regression (KRR)[M2012] combines Ridge regression and classification(linear least squares with L_2-norm regularization) with the kernel trick. It thus learns a linear function in the s...
    scikit-learn.org/stable/modules/kernel_ridge.html
    Mon Jan 19 11:28:25 GMT 2026
      38.6K bytes
      Cache
     
  8. 7.4. Imputation of missing values — sciki...

    For various reasons, many real world datasets contain missing values, often encoded as blanks, NaNs or other placeholders. Such datasets however are incompatible with scikit-learn estimators which ...
    scikit-learn.org/stable/modules/impute.html
    Mon Jan 19 11:28:25 GMT 2026
      84.5K bytes
      Cache
     
  9. Prediction Intervals for Gradient Boosting Regr...

    This example shows how quantile regression can be used to create prediction intervals. See Features in Histogram Gradient Boosting Trees for an example showcasing some other features of HistGradien...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html
    Mon Jan 19 11:28:24 GMT 2026
      140.7K bytes
      Cache
     
  10. Multi-class AdaBoosted Decision Trees — s...

    This example shows how boosting can improve the prediction accuracy on a multi-label classification problem. It reproduces a similar experiment as depicted by Figure 1 in Zhu et al 1. The core prin...
    scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_multiclass.html
    Mon Jan 19 11:28:25 GMT 2026
      114.8K bytes
      Cache
     
Back to Top