Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 611 - 620 of 1,701 for document (0.41 sec)

  1. ledoit_wolf — scikit-learn 1.7.0 documentation

    Gallery examples: Sparse inverse covariance estimation
    scikit-learn.org/stable/modules/generated/sklearn.covariance.ledoit_wolf.html
    Thu Jul 03 11:42:06 UTC 2025
      109.5K bytes
      Cache
     
  2. make_union — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version make_union # sklearn.pipeline. make_union ( * transfo...
    scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_union.html
    Thu Jul 03 11:42:05 UTC 2025
      108.9K bytes
      Cache
     
  3. Semi Supervised Classification — scikit-learn 1...

    Examples concerning the sklearn.semi_supervised module. Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset Effect of varying threshold for self-training Label Propagati...
    scikit-learn.org/stable/auto_examples/semi_supervised/index.html
    Thu Jul 03 11:42:05 UTC 2025
      77.1K bytes
      Cache
     
  4. Probability Calibration curves — scikit-learn 1...

    When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This examp...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration_curve.html
    Thu Jul 03 11:42:05 UTC 2025
      143.5K bytes
      Cache
     
  5. maxabs_scale — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version maxabs_scale # sklearn.preprocessing. maxabs_scale ( ...
    scikit-learn.org/stable/modules/generated/sklearn.preprocessing.maxabs_scale.html
    Thu Jul 03 11:42:06 UTC 2025
      109.8K bytes
      Cache
     
  6. Gradient Boosting regularization — scikit-learn...

    Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009 1. The loss function used is binomial deviance. Regularization v...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html
    Thu Jul 03 11:42:05 UTC 2025
      96.3K bytes
      Cache
     
  7. Model Complexity Influence — scikit-learn 1.7.0...

    Demonstrate how model complexity influences both prediction accuracy and computational performance. We will be using two datasets:,- Diabetes dataset for regression. This dataset consists of 10 mea...
    scikit-learn.org/stable/auto_examples/applications/plot_model_complexity_influence.html
    Thu Jul 03 11:42:05 UTC 2025
      126K bytes
      1 views
      Cache
     
  8. Compare BIRCH and MiniBatchKMeans — scikit-lear...

    This example compares the timing of BIRCH (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 25,000 samples and 2 features generated using make_blobs. B...
    scikit-learn.org/stable/auto_examples/cluster/plot_birch_vs_minibatchkmeans.html
    Thu Jul 03 11:42:06 UTC 2025
      105K bytes
      Cache
     
  9. make_classification — scikit-learn 1.7.0 docume...

    Gallery examples: Probability Calibration curves Comparison of Calibration of Classifiers Classifier comparison OOB Errors for Random Forests Feature transformations with ensembles of trees Feature...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
    Thu Jul 03 11:42:05 UTC 2025
      135.8K bytes
      Cache
     
  10. make_scorer — scikit-learn 1.7.0 documentation

    Gallery examples: Lagged features for time series forecasting Prediction Intervals for Gradient Boosting Regression Features in Histogram Gradient Boosting Trees Post-tuning the decision threshold ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html
    Thu Jul 03 11:42:05 UTC 2025
      115.7K bytes
      Cache
     
Back to top