Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 591 - 600 of 1,679 for document (0.39 sec)

  1. make_low_rank_matrix — scikit-learn 1.6.1 docum...

    faces TF-IDF vectors of text documents crawled from the web Read...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html
    Sat Apr 19 00:31:22 UTC 2025
      112.5K bytes
      Cache
     
  2. Statistical comparison of models using grid sea...

    Documentation for GridSearchCV i Fitted...SVC(random_state=0) SVC ? Documentation for SVC SVC(random_state=0)...
    scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_stats.html
    Sat Apr 19 00:31:22 UTC 2025
      180.1K bytes
      Cache
     
  3. Target Encoder’s Internal Cross fitting — sciki...

    The TargetEncoder replaces each category of a categorical feature with the shrunk mean of the target variable for that category. This method is useful in cases where there is a strong relationship ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_target_encoder_cross_val.html
    Sat Apr 19 00:31:22 UTC 2025
      112.2K bytes
      Cache
     
  4. Multiclass Receiver Operating Characteristic (R...

    This example describes the use of the Receiver Operating Characteristic (ROC) metric to evaluate the quality of multiclass classifiers. ROC curves typically feature true positive rate (TPR) on the ...
    scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
    Sat Apr 19 00:31:22 UTC 2025
      150.1K bytes
      Cache
     
  5. Illustration of prior and posterior Gaussian pr...

    This example illustrates the prior and posterior of a GaussianProcessRegressor with different kernels. Mean, standard deviation, and 5 samples are shown for both prior and posterior distributions. ...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
    Sat Apr 19 00:31:22 UTC 2025
      135.8K bytes
      Cache
     
  6. Gradient Boosting Out-of-Bag estimates — scikit...

    Out-of-bag (OOB) estimates can be a useful heuristic to estimate the “optimal” number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be comput...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_oob.html
    Sat Apr 19 00:31:22 UTC 2025
      111.8K bytes
      Cache
     
  7. Balance model complexity and cross-validated sc...

    This example balances model complexity and cross-validated score by finding a decent accuracy within 1 standard deviation of the best accuracy score while minimising the number of PCA components [1...
    scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_refit_callable.html
    Sat Apr 19 00:31:22 UTC 2025
      99.5K bytes
      Cache
     
  8. Joint feature selection with multi-task Lasso —...

    The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a t...
    scikit-learn.org/stable/auto_examples/linear_model/plot_multi_task_lasso_support.html
    Sat Apr 19 00:31:22 UTC 2025
      99.7K bytes
      Cache
     
  9. 1.4. Support Vector Machines — scikit-learn 1.6...

    Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection. The advantages of support vector machines are: Effective in high ...
    scikit-learn.org/stable/modules/svm.html
    Sat Apr 19 00:31:21 UTC 2025
      124.6K bytes
      Cache
     
  10. mean_absolute_percentage_error — scikit-learn 1...

    Gallery examples: Lagged features for time series forecasting
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html
    Sat Apr 19 00:31:21 UTC 2025
      113.1K bytes
      Cache
     
Back to top