Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 501 - 510 of 3,542 for document (4.91 seconds)

  1. User Guide — scikit-learn 1.8.0 documenta...

    Supervised learning- Linear Models- Ordinary Least Squares, Ridge regression and classification, Lasso, Multi-task Lasso, Elastic-Net, Multi-task Elastic-Net, Least Angle Regression, LARS Lasso, Or...
    scikit-learn.org/stable/user_guide.html
    Mon Jan 26 11:09:14 GMT 2026
      81.6K bytes
      Cache
     
  2. sklearn.inspection — scikit-learn 1.8.0 d...

    Tools for model inspection. User guide. See the Inspection section for further details. Plotting:
    scikit-learn.org/stable/api/sklearn.inspection.html
    Mon Jan 26 11:09:14 GMT 2026
      116.3K bytes
      Cache
     
  3. sklearn.pipeline — scikit-learn 1.8.0 doc...

    Utilities to build a composite estimator as a chain of transforms and estimators. User guide. See the Pipelines and composite estimators section for further details.
    scikit-learn.org/stable/api/sklearn.pipeline.html
    Mon Jan 26 11:09:16 GMT 2026
      116.3K bytes
      Cache
     
  4. sklearn.ensemble — scikit-learn 1.8.0 doc...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Mon Jan 26 11:09:14 GMT 2026
      121.4K bytes
      Cache
     
  5. sklearn.covariance — scikit-learn 1.8.0 d...

    Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. C...
    scikit-learn.org/stable/api/sklearn.covariance.html
    Mon Jan 26 11:09:14 GMT 2026
      120K bytes
      Cache
     
  6. sklearn.manifold — scikit-learn 1.8.0 doc...

    Data embedding techniques. User guide. See the Manifold learning section for further details.
    scikit-learn.org/stable/api/sklearn.manifold.html
    Mon Jan 26 11:09:16 GMT 2026
      117.8K bytes
      Cache
     
  7. sklearn.multioutput — scikit-learn 1.8.0 ...

    Multioutput regression and classification. The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their constructor. The meta-estimator extends ...
    scikit-learn.org/stable/api/sklearn.multioutput.html
    Mon Jan 26 11:09:14 GMT 2026
      116.5K bytes
      Cache
     
  8. Ensemble methods — scikit-learn 1.8.0 doc...

    Examples concerning the sklearn.ensemble module. Categorical Feature Support in Gradient Boosting Combine predictors using stacking Comparing Random Forests and Histogram Gradient Boosting models C...
    scikit-learn.org/stable/auto_examples/ensemble/index.html
    Mon Jan 26 11:09:12 GMT 2026
      86.6K bytes
      Cache
     
  9. Decision Trees — scikit-learn 1.8.0 docum...

    Examples concerning the sklearn.tree module. Decision Tree Regression Plot the decision surface of decision trees trained on the iris dataset Post pruning decision trees with cost complexity prunin...
    scikit-learn.org/stable/auto_examples/tree/index.html
    Mon Jan 26 11:09:12 GMT 2026
      75.2K bytes
      Cache
     
  10. Dataset examples — scikit-learn 1.8.0 doc...

    Examples concerning the sklearn.datasets module. Plot randomly generated multilabel dataset
    scikit-learn.org/stable/auto_examples/datasets/index.html
    Mon Jan 26 11:09:12 GMT 2026
      73.4K bytes
      Cache
     
Back to Top