- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 501 - 510 of 1,745 for document (0.68 sec)
-
Common pitfalls in the interpretation of coeffi...
Documentation for Pipeline i Fitted Parameters...columntransformer: ColumnTransformer ? Documentation for columntransformer: ColumnTransformer...scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html -
Early stopping in Gradient Boosting — scikit-le...
Gradient Boosting is an ensemble technique that combines multiple weak learners, typically decision trees, to create a robust and powerful predictive model. It does so in an iterative fashion, wher...scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_early_stopping.html -
Gaussian Process for Machine Learning — scikit-...
Examples concerning the sklearn.gaussian_process module. Ability of Gaussian process regression (GPR) to estimate data noise-level Comparison of kernel ridge and Gaussian process regression Forecas...scikit-learn.org/stable/auto_examples/gaussian_process/index.html -
SGD: Weighted samples — scikit-learn 1.7.2 docu...
Plot decision function of a weighted dataset, where the size of points is proportional to its weight. Total running time of the script:(0 minutes 0.069 seconds) Launch binder Launch JupyterLite Dow...scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html -
Two-class AdaBoost — scikit-learn 1.7.2 documen...
This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two “Gaussian quantiles” clusters (see sklearn.datasets.make_gaussian_quantiles) and pl...scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html -
Agglomerative clustering with different metrics...
Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can b...scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering_metrics.html -
A demo of the Spectral Biclustering algorithm —...
This example demonstrates how to generate a checkerboard dataset and bicluster it using the SpectralBiclustering algorithm. The spectral biclustering algorithm is specifically designed to cluster d...scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_biclustering.html -
SVM Tie Breaking Example — scikit-learn 1.7.2 d...
Tie breaking is costly if decision_function_shape='ovr', and therefore it is not enabled by default. This example illustrates the effect of the break_ties parameter for a multiclass classification ...scikit-learn.org/stable/auto_examples/svm/plot_svm_tie_breaking.html -
Sparse inverse covariance estimation — scikit-l...
Using the GraphicalLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision mat...scikit-learn.org/stable/auto_examples/covariance/plot_sparse_cov.html -
Related Projects — scikit-learn 1.7.2 documenta...
practices for testing and documenting estimators. The scikit-learn-contrib...Explanations and Automatic Documentation. Experimentation and model...scikit-learn.org/stable/related_projects.html