Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 31 - 40 of 749 for g (0.09 sec)

  1. How to deploy NLP: Text embeddings and vector s...

    0 g/cc and gasoline about 0.75 g/cc. These facts...
    www.elastic.co/search-labs/blog/how-to-deploy-nlp-text-embeddings-and-vector-search
    Wed Sep 24 00:38:31 UTC 2025
      191.5K bytes
      2 views
      Cache
     
  2. feature_selection.rst.txt

    g., the coefficients of a linear..... rubric:: References Richard G. Baraniuk "Compressive Sensing",...
    scikit-learn.org/stable/_sources/modules/feature_selection.rst.txt
    Sat Oct 18 13:52:21 UTC 2025
      14.5K bytes
      3 views
     
  3. cross_validation.rst.txt

    G. Fung, R. Rosales, `On the Dangers...l_SDM08.pdf>`_, SIAM 2008; * G. James, D. Witten, T. Hastie,...
    scikit-learn.org/stable/_sources/modules/cross_validation.rst.txt
    Mon Oct 20 15:12:26 UTC 2025
      41.1K bytes
      6 views
     
  4. model_evaluation.rst.txt

    g. in a kaggle competition or in...deterministic* function :math:`Y = g(X)` of the features :math:`X`....
    scikit-learn.org/stable/_sources/modules/model_evaluation.rst.txt
    Mon Oct 20 15:12:26 UTC 2025
      132.2K bytes
      4 views
     
  5. 1.11. Ensembles: Gradient boosting, random fore...

    We will denote it by \(g_i\) . Removing the constant terms,...\arg\min_{h} \sum_{i=1}^{n} h(x_i) g_i\] This is minimized if \(h(x_i)\)...
    scikit-learn.org/stable/modules/ensemble.html
    Mon Oct 20 15:12:26 UTC 2025
      229.2K bytes
      Cache
     
  6. Better Binary Quantization (BBQ) in Lucene and ...

    visualization q V e c B i t s = a l i g n ( b i t s ( Q ( v c 1 ′ ) )...visualization q V ec B i t s = a l i g n ( bi t s ( Q ( v c 1 ′ ))) =...
    www.elastic.co/search-labs/blog/better-binary-quantization-lucene-elasticsearch
    Wed Sep 24 00:38:39 UTC 2025
      291.9K bytes
      Cache
     
  7. auto_examples_jupyter.zip

    subplot(G[0, :])\nax2 = plt.subplot(G[1, 0])\nax3 = plt.subplot(G[1,...plt.subplot(G[1, 1])\nax4 = plt.subplot(G[1, 2])\n\n# Reachability...
    scikit-learn.org/stable/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip
    Tue Oct 14 17:56:26 UTC 2025
      2.2M bytes
      2 views
     
  8. auto_examples_python.zip

    7)) G = gridspec.GridSpec(2, 3) ax1 = plt.subplot(G[0, :])...ax2 = plt.subplot(G[1, 0]) ax3 = plt.subplot(G[1, 1]) ax4 = plt.subplot(G[1,...
    scikit-learn.org/stable/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip
    Fri Oct 17 15:07:11 UTC 2025
      1.7M bytes
      7 views
     
  9. 1.5. Stochastic Gradient Descent — scikit-learn...

    g. make_pipeline(StandardScaler(),...attributes have an intrinsic scale (e.g. word frequencies or indicator...
    scikit-learn.org/stable/modules/sgd.html
    Mon Oct 20 15:12:26 UTC 2025
      90K bytes
      Cache
     
  10. neighbors.rst.txt

    G. Hinton, R. Salakhutdinov, Advances...
    scikit-learn.org/stable/_sources/modules/neighbors.rst.txt
    Sat Oct 18 13:52:20 UTC 2025
      37.9K bytes
     
Back to top