Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1211 - 1220 of 1,826 for document (0.08 sec)

  1. Post pruning decision trees with cost complexit...

    The DecisionTreeClassifier provides parameters such as min_samples_leaf and max_depth to prevent a tree from overfiting. Cost complexity pruning provides another option to control the size of a tre...
    scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html
    Sat Nov 23 04:49:16 UTC 2024
      98.2K bytes
      Cache
     
  2. Factor Analysis (with rotation) to visualize pa...

    Investigating the Iris dataset, we see that sepal length, petal length and petal width are highly correlated. Sepal width is less redundant. Matrix decomposition techniques can uncover these latent...
    scikit-learn.org/stable/auto_examples/decomposition/plot_varimax_fa.html
    Sat Nov 23 04:49:15 UTC 2024
      91.9K bytes
      Cache
     
  3. An example of K-Means++ initialization — scikit...

    An example to show the output of the sklearn.cluster.kmeans_plusplus function for generating initial seeds for clustering. K-Means++ is used as the default initialization for K-means. Total running...
    scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_plusplus.html
    Sat Nov 23 04:49:14 UTC 2024
      84.2K bytes
      Cache
     
  4. Plot the decision surfaces of ensembles of tree...

    Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first col...
    scikit-learn.org/stable/auto_examples/ensemble/plot_forest_iris.html
    Sat Nov 23 04:49:15 UTC 2024
      109.5K bytes
      Cache
     
  5. make_sparse_spd_matrix — scikit-learn 1.5.2 doc...

    Gallery examples: Sparse inverse covariance estimation
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_spd_matrix.html
    Sat Nov 23 04:49:16 UTC 2024
      110.4K bytes
      Cache
     
  6. enable_halving_search_cv — scikit-learn 1.5.2 d...

    Enables Successive Halving search-estimators The API and results of these estimators might change without any deprecation cycle. Importing this file dynamically sets the HalvingRandomSearchCV and H...
    scikit-learn.org/stable/modules/generated/sklearn.experimental.enable_halving_search_cv.html
    Sat Nov 23 04:49:14 UTC 2024
      104.5K bytes
      Cache
     
  7. root_mean_squared_error — scikit-learn 1.5.2 do...

    Gallery examples: Features in Histogram Gradient Boosting Trees Lagged features for time series forecasting
    scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_error.html
    Sat Nov 23 04:49:14 UTC 2024
      110.1K bytes
      Cache
     
  8. homogeneity_completeness_v_measure — scikit-lea...

    Skip to main content Back to top Ctrl + K GitHub homogeneity_completeness_v_measure # sklearn.metrics. homogeneity_co...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html
    Sat Nov 23 04:49:16 UTC 2024
      109.5K bytes
      Cache
     
  9. top_k_accuracy_score — scikit-learn 1.5.2 docum...

    Skip to main content Back to top Ctrl + K GitHub top_k_accuracy_score # sklearn.metrics. top_k_accuracy_score ( y_tru...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.top_k_accuracy_score.html
    Sat Nov 23 04:49:16 UTC 2024
      111.5K bytes
      Cache
     
  10. mean_squared_log_error — scikit-learn 1.5.2 doc...

    Skip to main content Back to top Ctrl + K GitHub mean_squared_log_error # sklearn.metrics. mean_squared_log_error ( y...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html
    Sat Nov 23 04:49:16 UTC 2024
      109.6K bytes
      Cache
     
Back to top