Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1191 - 1200 of 1,745 for document (1.88 sec)

  1. l1_min_c — scikit-learn 1.7.2 documentation

    Gallery examples: Regularization path of L1- Logistic Regression
    scikit-learn.org/stable/modules/generated/sklearn.svm.l1_min_c.html
    Sat Oct 11 07:51:26 UTC 2025
      110.7K bytes
      Cache
     
  2. check_random_state — scikit-learn 1.7.2 documen...

    Gallery examples: Empirical evaluation of the impact of k-means initialization MNIST classification using multinomial logistic + L1 Manifold Learning methods on a severed sphere Isotonic Regression...
    scikit-learn.org/stable/modules/generated/sklearn.utils.check_random_state.html
    Sat Oct 11 07:51:25 UTC 2025
      110.1K bytes
      Cache
     
  3. Early stopping of Stochastic Gradient Descent —...

    Stochastic Gradient Descent is an optimization technique which minimizes a loss function in a stochastic fashion, performing a gradient descent step sample by sample. In particular, it is a very ef...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_early_stopping.html
    Sat Oct 11 07:51:26 UTC 2025
      107.6K bytes
      Cache
     
  4. pair_confusion_matrix — scikit-learn 1.7.2 docu...

    Skip to main content Back to top Ctrl + K GitHub Choose version pair_confusion_matrix # sklearn.metrics.cluster. pair...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.cluster.pair_confusion_matrix.html
    Sat Oct 11 07:51:25 UTC 2025
      109.6K bytes
      Cache
     
  5. Effect of transforming the targets in regressio...

    In this example, we give an overview of TransformedTargetRegressor. We use two examples to illustrate the benefit of transforming the targets before learning a linear regression model. The first ex...
    scikit-learn.org/stable/auto_examples/compose/plot_transformed_target.html
    Sat Oct 11 07:51:27 UTC 2025
      125.3K bytes
      Cache
     
  6. extract_patches_2d — scikit-learn 1.7.2 documen...

    Gallery examples: Online learning of a dictionary of parts of faces Image denoising using dictionary learning
    scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.extract_patches_2d.html
    Sat Oct 11 07:51:25 UTC 2025
      111.9K bytes
      Cache
     
  7. Test with permutations the significance of a cl...

    This example demonstrates the use of permutation_test_score to evaluate the significance of a cross-validated score using permutations. Dataset: We will use the Iris plants dataset, which consists ...
    scikit-learn.org/stable/auto_examples/model_selection/plot_permutation_tests_for_classification.html
    Sat Oct 11 07:51:25 UTC 2025
      100.9K bytes
      Cache
     
  8. Recognizing hand-written digits — scikit-learn ...

    This example shows how scikit-learn can be used to recognize images of hand-written digits, from 0-9. Digits dataset: The digits dataset consists of 8x8 pixel images of digits. The images attribute...
    scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
    Sat Oct 11 07:51:26 UTC 2025
      102K bytes
      Cache
     
  9. Blind source separation using FastICA — scikit-...

    An example of estimating sources from noisy data. Independent component analysis (ICA) is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 micro...
    scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_source_separation.html
    Sat Oct 11 07:51:26 UTC 2025
      97K bytes
      Cache
     
  10. Image denoising using kernel PCA — scikit-learn...

    This example shows how to use KernelPCA to denoise images. In short, we take advantage of the approximation function learned during fit to reconstruct the original image. We will compare the result...
    scikit-learn.org/stable/auto_examples/applications/plot_digits_denoising.html
    Sat Oct 11 07:51:27 UTC 2025
      102.6K bytes
      Cache
     
Back to top