Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1181 - 1190 of 1,703 for document (0.23 sec)

  1. A demo of structured Ward hierarchical clusteri...

    Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in order for each segmented region to be in one piece. Generate data: Resize it to ...
    scikit-learn.org/stable/auto_examples/cluster/plot_coin_ward_segmentation.html
    Tue Jul 08 15:58:50 UTC 2025
      94.3K bytes
      Cache
     
  2. Plot multi-class SGD on the iris dataset — scik...

    Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. Total running time of the ...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html
    Tue Jul 08 15:58:47 UTC 2025
      94.9K bytes
      Cache
     
  3. 2.7. Novelty and Outlier Detection — scikit-lea...

    Many applications require being able to decide whether a new observation belongs to the same distribution as existing observations (it is an inlier), or should be considered as different (it is an ...
    scikit-learn.org/stable/modules/outlier_detection.html
    Tue Jul 08 15:58:48 UTC 2025
      72.1K bytes
      Cache
     
  4. Comparing randomized search and grid search for...

    Compare randomized search and grid search for optimizing hyperparameters of a linear SVM with SGD training. All parameters that influence the learning are searched simultaneously (except for the nu...
    scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html
    Tue Jul 08 15:58:49 UTC 2025
      97.2K bytes
      Cache
     
  5. precision_recall_fscore_support — scikit-learn ...

    Skip to main content Back to top Ctrl + K GitHub Choose version precision_recall_fscore_support # sklearn.metrics. pr...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
    Tue Jul 08 15:58:48 UTC 2025
      122.4K bytes
      Cache
     
  6. normalized_mutual_info_score — scikit-learn 1.7...

    Gallery examples: Adjustment for chance in clustering performance evaluation
    scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
    Tue Jul 08 15:58:50 UTC 2025
      112.4K bytes
      Cache
     
  7. reconstruct_from_patches_2d — scikit-learn 1.7....

    Gallery examples: Image denoising using dictionary learning
    scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.reconstruct_from_patch...
    Tue Jul 08 15:58:48 UTC 2025
      110K bytes
      Cache
     
  8. Support Vector Regression (SVR) using linear an...

    Toy example of 1D regression using linear, polynomial and RBF kernels. Generate sample data: Fit regression model: Look at the results: Total running time of the script:(0 minutes 5.393 seconds) La...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
    Tue Jul 08 15:58:49 UTC 2025
      97.7K bytes
      Cache
     
  9. Gaussian Processes regression: basic introducto...

    A simple one-dimensional regression example computed in two different ways: A noise-free case, A noisy case with known noise-level per datapoint. In both cases, the kernel’s parameters are estimate...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html
    Tue Jul 08 15:58:47 UTC 2025
      107.6K bytes
      Cache
     
  10. MNIST classification using multinomial logistic...

    Here we fit a multinomial logistic regression with L1 penalty on a subset of the MNIST digits classification task. We use the SAGA algorithm for this purpose: this a solver that is fast when the nu...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html
    Tue Jul 08 15:58:49 UTC 2025
      96.3K bytes
      Cache
     
Back to top