Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1181 - 1190 of 1,745 for document (2.22 sec)

  1. Features in Histogram Gradient Boosting Trees —...

    Histogram-Based Gradient Boosting(HGBT) models may be one of the most useful supervised learning models in scikit-learn. They are based on a modern gradient boosting implementation comparable to Li...
    scikit-learn.org/stable/auto_examples/ensemble/plot_hgbt_regression.html
    Sat Oct 11 07:51:27 UTC 2025
      150.9K bytes
      Cache
     
  2. median_absolute_error — scikit-learn 1.7.2 docu...

    Gallery examples: Effect of transforming the targets in regression model Common pitfalls in the interpretation of coefficients of linear models
    scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html
    Sat Oct 11 07:51:25 UTC 2025
      112.4K bytes
      Cache
     
  3. precision_recall_curve — scikit-learn 1.7.2 doc...

    Gallery examples: Visualizations with Display Objects Precision-Recall
    scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
    Sat Oct 11 07:51:26 UTC 2025
      115.3K bytes
      Cache
     
  4. Compare Stochastic learning strategies for MLPC...

    This example visualizes some training loss curves for different stochastic learning strategies, including SGD and Adam. Because of time-constraints, we use several small datasets, for which L-BFGS ...
    scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_training_curves.html
    Sat Oct 11 07:51:25 UTC 2025
      105.4K bytes
      Cache
     
  5. Multilabel classification using a classifier ch...

    This example shows how to use ClassifierChain to solve a multilabel classification problem. The most naive strategy to solve such a task is to independently train a binary classifier on each label ...
    scikit-learn.org/stable/auto_examples/multioutput/plot_classifier_chain_yeast.html
    Sat Oct 11 07:51:26 UTC 2025
      105.1K bytes
      Cache
     
  6. cross_val_predict — scikit-learn 1.7.2 document...

    Gallery examples: Combine predictors using stacking Plotting Cross-Validated Predictions
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
    Sat Oct 11 07:51:26 UTC 2025
      120.3K bytes
      Cache
     
  7. mutual_info_classif — scikit-learn 1.7.2 docume...

    Gallery examples: Selecting dimensionality reduction with Pipeline and GridSearchCV
    scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
    Sat Oct 11 07:51:26 UTC 2025
      114.9K bytes
      Cache
     
  8. mutual_info_regression — scikit-learn 1.7.2 doc...

    Gallery examples: Comparison of F-test and mutual information
    scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html
    Sat Oct 11 07:51:26 UTC 2025
      114.4K bytes
      Cache
     
  9. cross_val_score — scikit-learn 1.7.2 documentation

    Gallery examples: Lagged features for time series forecasting Model selection with Probabilistic PCA and Factor Analysis (FA) Imputing missing values with variants of IterativeImputer Imputing miss...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
    Sat Oct 11 07:51:25 UTC 2025
      126.3K bytes
      Cache
     
  10. Concatenating multiple feature extraction metho...

    In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use Feat...
    scikit-learn.org/stable/auto_examples/compose/plot_feature_union.html
    Sat Oct 11 07:51:27 UTC 2025
      109.8K bytes
      Cache
     
Back to top