- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 1121 - 1130 of 1,826 for document (0.07 sec)
-
roc_auc_score — scikit-learn 1.5.2 documentation
Gallery examples: Release Highlights for scikit-learn 1.4 Release Highlights for scikit-learn 0.22 Probability Calibration curves Model-based and sequential feature selection Multiclass Receiver Op...scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html -
inplace_column_scale — scikit-learn 1.5.2 docum...
Skip to main content Back to top Ctrl + K GitHub inplace_column_scale # sklearn.utils.sparsefuncs. inplace_column_sca...scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.inplace_column_scale.html -
mean_variance_axis — scikit-learn 1.5.2 documen...
Skip to main content Back to top Ctrl + K GitHub mean_variance_axis # sklearn.utils.sparsefuncs. mean_variance_axis (...scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.mean_variance_axis.html -
sample_without_replacement — scikit-learn 1.5.2...
Skip to main content Back to top Ctrl + K GitHub sample_without_replacement # sklearn.utils.random. sample_without_re...scikit-learn.org/stable/modules/generated/sklearn.utils.random.sample_without_replacement.html -
Forecasting of CO2 level on Mona Loa dataset us...
Documentation for GaussianProcessRegre...scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html -
8. Computing with scikit-learn — scikit-learn 1...
Strategies to scale computationally: bigger data- Scaling with instances using out-of-core learning., Computational Performance- Prediction Latency, Prediction Throughput, Tips and Tricks., Paralle...scikit-learn.org/stable/computing.html -
7.1. Toy datasets — scikit-learn 1.5.2 document...
scikit-learn comes with a few small standard datasets that do not require to download any file from some external website. They can be loaded using the following functions: These datasets are usefu...scikit-learn.org/stable/datasets/toy_dataset.html -
1.10. Decision Trees — scikit-learn 1.5.2 docum...
Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning s...scikit-learn.org/stable/modules/tree.html -
1.16. Probability calibration — scikit-learn 1....
When performing classification you often want not only to predict the class label, but also obtain a probability of the respective label. This probability gives you some kind of confidence on the p...scikit-learn.org/stable/modules/calibration.html -
2.8. Density Estimation — scikit-learn 1.5.2 do...
Density estimation walks the line between unsupervised learning, feature engineering, and data modeling. Some of the most popular and useful density estimation techniques are mixture models such as...scikit-learn.org/stable/modules/density.html