Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1101 - 1110 of 1,555 for document (2.18 sec)

  1. inplace_swap_row — scikit-learn 1.7.1 documenta...

    Skip to main content Back to top Ctrl + K GitHub Choose version inplace_swap_row # sklearn.utils.sparsefuncs. inplace...
    scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.inplace_swap_row.html
    Mon Aug 18 14:44:58 UTC 2025
      108K bytes
      Cache
     
  2. add_dummy_feature — scikit-learn 1.7.1 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version add_dummy_feature # sklearn.preprocessing. add_dummy_...
    scikit-learn.org/stable/modules/generated/sklearn.preprocessing.add_dummy_feature.html
    Wed Aug 20 16:02:09 UTC 2025
      105.8K bytes
      Cache
     
  3. check_random_state — scikit-learn 1.7.1 documen...

    Gallery examples: Empirical evaluation of the impact of k-means initialization MNIST classification using multinomial logistic + L1 Manifold Learning methods on a severed sphere Isotonic Regression...
    scikit-learn.org/stable/modules/generated/sklearn.utils.check_random_state.html
    Thu Aug 21 16:13:30 UTC 2025
      110.1K bytes
      Cache
     
  4. check_X_y — scikit-learn 1.7.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version check_X_y # sklearn.utils. check_X_y ( X , y , accept...
    scikit-learn.org/stable/modules/generated/sklearn.utils.check_X_y.html
    Wed Aug 20 16:02:09 UTC 2025
      115.6K bytes
      Cache
     
  5. Features in Histogram Gradient Boosting Trees —...

    Histogram-Based Gradient Boosting(HGBT) models may be one of the most useful supervised learning models in scikit-learn. They are based on a modern gradient boosting implementation comparable to Li...
    scikit-learn.org/stable/auto_examples/ensemble/plot_hgbt_regression.html
    Fri Aug 22 18:00:32 UTC 2025
      150.9K bytes
      Cache
     
  6. Early stopping of Stochastic Gradient Descent —...

    Stochastic Gradient Descent is an optimization technique which minimizes a loss function in a stochastic fashion, performing a gradient descent step sample by sample. In particular, it is a very ef...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_early_stopping.html
    Fri Aug 22 18:00:29 UTC 2025
      107.6K bytes
      Cache
     
  7. Outlier detection on a real data set — scikit-l...

    This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier detection and for a better understanding of the data structure. We selected two ...
    scikit-learn.org/stable/auto_examples/applications/plot_outlier_detection_wine.html
    Fri Aug 22 18:00:32 UTC 2025
      101.7K bytes
      1 views
      Cache
     
  8. Image denoising using kernel PCA — scikit-learn...

    This example shows how to use KernelPCA to denoise images. In short, we take advantage of the approximation function learned during fit to reconstruct the original image. We will compare the result...
    scikit-learn.org/stable/auto_examples/applications/plot_digits_denoising.html
    Fri Aug 22 18:00:34 UTC 2025
      102.6K bytes
      Cache
     
  9. Blind source separation using FastICA — scikit-...

    An example of estimating sources from noisy data. Independent component analysis (ICA) is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 micro...
    scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_source_separation.html
    Fri Aug 22 18:00:32 UTC 2025
      97K bytes
      Cache
     
  10. Recognizing hand-written digits — scikit-learn ...

    This example shows how scikit-learn can be used to recognize images of hand-written digits, from 0-9. Digits dataset: The digits dataset consists of 8x8 pixel images of digits. The images attribute...
    scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
    Fri Aug 22 18:00:34 UTC 2025
      102K bytes
      Cache
     
Back to top