Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1101 - 1110 of 1,745 for document (1.75 sec)

  1. Ability of Gaussian process regression (GPR) to...

    This example shows the ability of the WhiteKernel to estimate the noise level in the data. Moreover, we show the importance of kernel hyperparameters initialization. Data generation: We will work i...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy.html
    Sat Oct 11 07:51:26 UTC 2025
      132.8K bytes
      Cache
     
  2. Feature agglomeration vs. univariate selection ...

    This example compares 2 dimensionality reduction strategies: univariate feature selection with Anova, feature agglomeration with Ward hierarchical clustering. Both methods are compared in a regress...
    scikit-learn.org/stable/auto_examples/cluster/plot_feature_agglomeration_vs_univariate_selection....
    Sat Oct 11 07:51:26 UTC 2025
      112.4K bytes
      Cache
     
  3. Comparison of kernel ridge and Gaussian process...

    This example illustrates differences between a kernel ridge regression and a Gaussian process regression. Both kernel ridge regression and Gaussian process regression are using a so-called “kernel ...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_compare_gpr_krr.html
    Sat Oct 11 07:51:25 UTC 2025
      145.3K bytes
      Cache
     
  4. Regularization path of L1- Logistic Regression ...

    Train l1-penalized logistic regression models on a binary classification problem derived from the Iris dataset. The models are ordered from strongest regularized to least regularized. The 4 coeffic...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_path.html
    Sat Oct 11 07:51:26 UTC 2025
      97K bytes
      Cache
     
  5. check_scalar — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version check_scalar # sklearn.utils. check_scalar ( x , name...
    scikit-learn.org/stable/modules/generated/sklearn.utils.check_scalar.html
    Thu Oct 09 16:57:49 UTC 2025
      109.7K bytes
      1 views
      Cache
     
  6. all_displays — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version all_displays # sklearn.utils.discovery. all_displays ...
    scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_displays.html
    Thu Oct 09 16:57:48 UTC 2025
      105.3K bytes
      Cache
     
  7. all_functions — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version all_functions # sklearn.utils.discovery. all_function...
    scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_functions.html
    Thu Oct 09 16:57:45 UTC 2025
      105.4K bytes
      Cache
     
  8. weighted_mode — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version weighted_mode # sklearn.utils.extmath. weighted_mode ...
    scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.weighted_mode.html
    Thu Oct 09 16:57:48 UTC 2025
      108.4K bytes
      Cache
     
  9. sigmoid_kernel — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version sigmoid_kernel # sklearn.metrics.pairwise. sigmoid_ke...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.sigmoid_kernel.html
    Fri Oct 10 15:14:35 UTC 2025
      107.6K bytes
      Cache
     
  10. linear_kernel — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version linear_kernel # sklearn.metrics.pairwise. linear_kern...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.linear_kernel.html
    Fri Oct 10 15:14:35 UTC 2025
      107.5K bytes
      Cache
     
Back to top