Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1021 - 1030 of 1,742 for document (1.92 sec)

  1. lars_path_gram — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version lars_path_gram # sklearn.linear_model. lars_path_gram...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.lars_path_gram.html
    Fri Oct 10 15:14:35 UTC 2025
      118.4K bytes
      Cache
     
  2. Simple 1D Kernel Density Estimation — scikit-le...

    This example uses the KernelDensity class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize th...
    scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html
    Fri Oct 10 15:14:33 UTC 2025
      116.1K bytes
      Cache
     
  3. 3. Model selection and evaluation — scikit-lear...

    Cross-validation: evaluating estimator performance- Computing cross-validated metrics, Cross validation iterators, A note on shuffling, Cross validation and model selection, Permutation test score....
    scikit-learn.org/stable/model_selection.html
    Fri Oct 10 15:14:36 UTC 2025
      34.4K bytes
      Cache
     
  4. Scalable learning with polynomial kernel approx...

    This example illustrates the use of PolynomialCountSketch to efficiently generate polynomial kernel feature-space approximations. This is used to train linear classifiers that approximate the accur...
    scikit-learn.org/stable/auto_examples/kernel_approximation/plot_scalable_poly_kernels.html
    Fri Oct 10 15:14:35 UTC 2025
      115.5K bytes
      Cache
     
  5. Dimensionality Reduction with Neighborhood Comp...

    Sample usage of Neighborhood Components Analysis for dimensionality reduction. This example compares different (linear) dimensionality reduction methods applied on the Digits data set. The data set...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html
    Fri Oct 10 15:14:35 UTC 2025
      98.2K bytes
      Cache
     
  6. class_likelihood_ratios — scikit-learn 1.7.2 do...

    Gallery examples: Class Likelihood Ratios to measure classification performance
    scikit-learn.org/stable/modules/generated/sklearn.metrics.class_likelihood_ratios.html
    Fri Oct 10 15:14:36 UTC 2025
      122.5K bytes
      Cache
     
  7. get_scorer_names — scikit-learn 1.7.2 documenta...

    Skip to main content Back to top Ctrl + K GitHub Choose version get_scorer_names # sklearn.metrics. get_scorer_names ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.get_scorer_names.html
    Fri Oct 10 15:14:33 UTC 2025
      105.5K bytes
      Cache
     
  8. d2_tweedie_score — scikit-learn 1.7.2 documenta...

    Skip to main content Back to top Ctrl + K GitHub Choose version d2_tweedie_score # sklearn.metrics. d2_tweedie_score ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.d2_tweedie_score.html
    Fri Oct 10 15:14:36 UTC 2025
      110.1K bytes
      Cache
     
  9. Using KBinsDiscretizer to discretize continuous...

    The example compares prediction result of linear regression (linear model) and decision tree (tree based model) with and without discretization of real-valued features. As is shown in the result be...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization.html
    Fri Oct 10 15:14:33 UTC 2025
      98.1K bytes
      Cache
     
  10. calinski_harabasz_score — scikit-learn 1.7.2 do...

    Skip to main content Back to top Ctrl + K GitHub Choose version calinski_harabasz_score # sklearn.metrics. calinski_h...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
    Fri Oct 10 15:14:35 UTC 2025
      107.6K bytes
      Cache
     
Back to top