Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 1011 - 1020 of 3,496 for document (5.74 seconds)

  1. Pipelining: chaining a PCA and a logistic regre...

    The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA, Total running time of the scrip...
    scikit-learn.org/stable/auto_examples/compose/plot_digits_pipe.html
    Mon Jan 19 11:28:23 GMT 2026
      97K bytes
      Cache
     
  2. Release Highlights for scikit-learn 1.5 —...

    We are pleased to announce the release of scikit-learn 1.5! Many bug fixes and improvements were added, as well as some key new features. Below we detail the highlights of this release. For an exha...
    scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_5_0.html
    Mon Jan 19 11:28:25 GMT 2026
      123K bytes
      Cache
     
  3. Various Agglomerative Clustering on a 2D embedd...

    An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset. The goal of this example is to show intuitively how the metrics behave, and not to fi...
    scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html
    Mon Jan 19 11:28:24 GMT 2026
      95.2K bytes
      Cache
     
  4. Release Highlights for scikit-learn 0.22 &#8212...

    We are pleased to announce the release of scikit-learn 0.22, which comes with many bug fixes and new features! We detail below a few of the major features of this release. For an exhaustive list of...
    scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_22_0.html
    Mon Jan 19 11:28:24 GMT 2026
      140.3K bytes
      Cache
     
  5. Comparing different clustering algorithms on to...

    This example shows characteristics of different clustering algorithms on datasets that are “interesting” but still in 2D. With the exception of the last dataset, the parameters of each of these dat...
    scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
    Mon Jan 19 11:28:25 GMT 2026
      126K bytes
      Cache
     
  6. Plot classification boundaries with different S...

    This example shows how different kernels in a SVC(Support Vector Classifier) influence the classification boundaries in a binary, two-dimensional classification problem. SVCs aim to find a hyperpla...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
    Mon Jan 19 11:28:23 GMT 2026
      122.4K bytes
      Cache
     
  7. Forecasting of CO2 level on Mona Loa dataset us...

    Documentation for GaussianProcessRegre...GaussianProcessRegre ? Documentation for GaussianProcessRegre...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html
    Mon Jan 19 11:28:25 GMT 2026
      161.6K bytes
      Cache
     
  8. 1.2. Linear and Quadratic Discriminant Analysis...

    Linear Discriminant Analysis ( LinearDiscriminantAnalysis) and Quadratic Discriminant Analysis ( QuadraticDiscriminantAnalysis) are two classic classifiers, with, as their names suggest, a linear a...
    scikit-learn.org/stable/modules/lda_qda.html
    Mon Jan 19 11:28:24 GMT 2026
      55.7K bytes
      Cache
     
  9. 2.9. Neural network models (unsupervised) &#821...

    Restricted Boltzmann machines: Restricted Boltzmann machines (RBM) are unsupervised nonlinear feature learners based on a probabilistic model. The features extracted by an RBM or a hierarchy of RBM...
    scikit-learn.org/stable/modules/neural_networks_unsupervised.html
    Mon Jan 19 11:28:25 GMT 2026
      40.2K bytes
      Cache
     
  10. Lasso model selection via information criteria ...

    This example reproduces the example of Fig. 2 of[ZHT2007]. A LassoLarsIC estimator is fit on a diabetes dataset and the AIC and the BIC criteria are used to select the best model. References ZHT200...
    scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars_ic.html
    Mon Jan 19 11:28:23 GMT 2026
      100K bytes
      Cache
     
Back to Top