Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 991 - 1000 of 1,699 for document (0.23 sec)

  1. Plotting Cross-Validated Predictions — scikit-l...

    This example shows how to use cross_val_predict together with PredictionErrorDisplay to visualize prediction errors. We will load the diabetes dataset and create an instance of a linear regression ...
    scikit-learn.org/stable/auto_examples/model_selection/plot_cv_predict.html
    Mon Jul 07 14:36:35 UTC 2025
      92.5K bytes
      Cache
     
  2. Ordinary Least Squares and Ridge Regression — s...

    Ordinary Least Squares: We illustrate how to use the ordinary least squares (OLS) model, LinearRegression, on a single feature of the diabetes dataset. We train on a subset of the data, evaluate on...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ols_ridge.html
    Mon Jul 07 14:36:35 UTC 2025
      106.7K bytes
      Cache
     
  3. Gaussian processes on discrete data structures ...

    This example illustrates the use of Gaussian processes for regression and classification tasks on data that are not in fixed-length feature vector form. This is achieved through the use of kernel f...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_on_structured_data.html
    Mon Jul 07 14:36:35 UTC 2025
      120.7K bytes
      1 views
      Cache
     
  4. Curve Fitting with Bayesian Ridge Regression — ...

    Computes a Bayesian Ridge Regression of Sinusoids. See Bayesian Ridge Regression for more information on the regressor. In general, when fitting a curve with a polynomial by Bayesian ridge regressi...
    scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html
    Mon Jul 07 14:36:35 UTC 2025
      98.1K bytes
      Cache
     
  5. Ridge coefficients as a function of the L2 Regu...

    A model that overfits learns the training data too well, capturing both the underlying patterns and the noise in the data. However, when applied to unseen data, the learned associations may not hol...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html
    Mon Jul 07 14:36:35 UTC 2025
      103.3K bytes
      Cache
     
  6. SGD: convex loss functions — scikit-learn 1.7.0...

    A plot that compares the various convex loss functions supported by SGDClassifier. Total running time of the script:(0 minutes 0.092 seconds) Launch binder Launch JupyterLite Download Jupyter noteb...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html
    Mon Jul 07 14:36:32 UTC 2025
      92.4K bytes
      Cache
     
  7. zero_one_loss — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version zero_one_loss # sklearn.metrics. zero_one_loss ( y_tr...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.zero_one_loss.html
    Mon Jul 07 14:36:35 UTC 2025
      110.3K bytes
      Cache
     
  8. fetch_olivetti_faces — scikit-learn 1.7.0 docum...

    Gallery examples: Online learning of a dictionary of parts of faces Faces dataset decompositions Face completion with a multi-output estimators
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_olivetti_faces.html
    Mon Jul 07 14:36:35 UTC 2025
      113.6K bytes
      Cache
     
  9. sklearn.kernel_ridge — scikit-learn 1.7.0 docum...

    Kernel ridge regression. User guide. See the Kernel ridge regression section for further details.
    scikit-learn.org/stable/api/sklearn.kernel_ridge.html
    Mon Jul 07 14:36:34 UTC 2025
      114.1K bytes
      Cache
     
  10. mean_poisson_deviance — scikit-learn 1.7.0 docu...

    Gallery examples: Poisson regression and non-normal loss
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_poisson_deviance.html
    Mon Jul 07 14:36:35 UTC 2025
      108.1K bytes
      Cache
     
Back to top