Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 941 - 950 of 1,702 for document (0.3 sec)

  1. load_wine — scikit-learn 1.7.0 documentation

    Gallery examples: Outlier detection on a real data set ROC Curve with Visualization API Importance of Feature Scaling
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html
    Thu Jul 03 11:42:05 UTC 2025
      112.5K bytes
      Cache
     
  2. spectral_clustering — scikit-learn 1.7.0 docume...

    Gallery examples: Segmenting the picture of greek coins in regions Spectral clustering for image segmentation
    scikit-learn.org/stable/modules/generated/sklearn.cluster.spectral_clustering.html
    Thu Jul 03 11:42:06 UTC 2025
      121.2K bytes
      Cache
     
  3. manhattan_distances — scikit-learn 1.7.0 docume...

    Skip to main content Back to top Ctrl + K GitHub Choose version manhattan_distances # sklearn.metrics.pairwise. manha...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.manhattan_distances.html
    Thu Jul 03 11:42:06 UTC 2025
      107.5K bytes
      Cache
     
  4. fetch_file — scikit-learn 1.7.0 documentation

    Gallery examples: Lagged features for time series forecasting
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_file.html
    Thu Jul 03 11:42:06 UTC 2025
      107.7K bytes
      Cache
     
  5. get_config — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version get_config # sklearn. get_config ( ) [source] # Retri...
    scikit-learn.org/stable/modules/generated/sklearn.get_config.html
    Thu Jul 03 11:42:06 UTC 2025
      105.7K bytes
      Cache
     
  6. Gradient Boosting regularization — scikit-learn...

    Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009 1. The loss function used is binomial deviance. Regularization v...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html
    Thu Jul 03 11:42:05 UTC 2025
      96.3K bytes
      Cache
     
  7. 6. Visualizations — scikit-learn 1.7.0 document...

    Scikit-learn defines a simple API for creating visualizations for machine learning. The key feature of this API is to allow for quick plotting and visual adjustments without recalculation. We provi...
    scikit-learn.org/stable/visualizations.html
    Thu Jul 03 11:42:05 UTC 2025
      50K bytes
      Cache
     
  8. Semi Supervised Classification — scikit-learn 1...

    Examples concerning the sklearn.semi_supervised module. Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset Effect of varying threshold for self-training Label Propagati...
    scikit-learn.org/stable/auto_examples/semi_supervised/index.html
    Thu Jul 03 11:42:05 UTC 2025
      77.1K bytes
      Cache
     
  9. Probability Calibration curves — scikit-learn 1...

    When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This examp...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration_curve.html
    Thu Jul 03 11:42:05 UTC 2025
      143.5K bytes
      Cache
     
  10. Model Complexity Influence — scikit-learn 1.7.0...

    Demonstrate how model complexity influences both prediction accuracy and computational performance. We will be using two datasets:,- Diabetes dataset for regression. This dataset consists of 10 mea...
    scikit-learn.org/stable/auto_examples/applications/plot_model_complexity_influence.html
    Thu Jul 03 11:42:05 UTC 2025
      126K bytes
      1 views
      Cache
     
Back to top