Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 921 - 930 of 3,496 for document (3.02 seconds)

  1. Getting Started — scikit-learn 1.8.0 docu...

    Scikit-learn is an open source machine learning library that supports supervised and unsupervised learning. It also provides various tools for model fitting, data preprocessing, model selection, mo...
    scikit-learn.org/stable/getting_started.html
    Mon Jan 19 11:28:25 GMT 2026
      49.8K bytes
      Cache
     
  2. Frozen Estimators — scikit-learn 1.8.0 do...

    Examples concerning the sklearn.frozen module. Examples of Using FrozenEstimator
    scikit-learn.org/stable/auto_examples/frozen/index.html
    Mon Jan 19 11:28:24 GMT 2026
      73.2K bytes
      Cache
     
  3. Quantile regression — scikit-learn 1.8.0 ...

    This example illustrates how quantile regression can predict non-trivial conditional quantiles. The left figure shows the case when the error distribution is normal, but has non-constant variance, ...
    scikit-learn.org/stable/auto_examples/linear_model/plot_quantile_regression.html
    Mon Jan 19 11:28:23 GMT 2026
      136.1K bytes
      Cache
     
  4. Nearest Neighbors — scikit-learn 1.8.0 do...

    Examples concerning the sklearn.neighbors module. Approximate nearest neighbors in TSNE Caching nearest neighbors Comparing Nearest Neighbors with and without Neighborhood Components Analysis Dimen...
    scikit-learn.org/stable/auto_examples/neighbors/index.html
    Mon Jan 19 11:28:23 GMT 2026
      81.7K bytes
      Cache
     
  5. sklearn.neural_network — scikit-learn 1.8...

    Models based on neural networks. User guide. See the Neural network models (supervised) and Neural network models (unsupervised) sections for further details.
    scikit-learn.org/stable/api/sklearn.neural_network.html
    Mon Jan 19 11:28:23 GMT 2026
      115.7K bytes
      Cache
     
  6. sklearn.preprocessing — scikit-learn 1.8....

    Methods for scaling, centering, normalization, binarization, and more. User guide. See the Preprocessing data section for further details.
    scikit-learn.org/stable/api/sklearn.preprocessing.html
    Mon Jan 19 11:28:23 GMT 2026
      125.8K bytes
      Cache
     
  7. sklearn.model_selection — scikit-learn 1....

    Tools for model selection, such as cross validation and hyper-parameter tuning. User guide. See the Cross-validation: evaluating estimator performance, Tuning the hyper-parameters of an estimator, ...
    scikit-learn.org/stable/api/sklearn.model_selection.html
    Mon Jan 19 11:28:23 GMT 2026
      129.5K bytes
      Cache
     
  8. sklearn.feature_selection — scikit-learn ...

    Feature selection algorithms. These include univariate filter selection methods and the recursive feature elimination algorithm. User guide. See the Feature selection section for further details.
    scikit-learn.org/stable/api/sklearn.feature_selection.html
    Mon Jan 19 11:28:25 GMT 2026
      122K bytes
      Cache
     
  9. sklearn.metrics — scikit-learn 1.8.0 docu...

    Score functions, performance metrics, pairwise metrics and distance computations. User guide. See the Metrics and scoring: quantifying the quality of predictions and Pairwise metrics, Affinities an...
    scikit-learn.org/stable/api/sklearn.metrics.html
    Mon Jan 19 11:28:23 GMT 2026
      160.5K bytes
      Cache
     
  10. sklearn.exceptions — scikit-learn 1.8.0 d...

    Custom warnings and errors used across scikit-learn.
    scikit-learn.org/stable/api/sklearn.exceptions.html
    Mon Jan 19 11:28:23 GMT 2026
      117.7K bytes
      Cache
     
Back to Top