Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 911 - 920 of 1,745 for document (0.54 sec)

  1. SparseRandomProjection — scikit-learn 1.7.2 doc...

    Gallery examples: Manifold learning on handwritten digits: Locally Linear Embedding, Isomap… The Johnson-Lindenstrauss bound for embedding with random projections
    scikit-learn.org/stable/modules/generated/sklearn.random_projection.SparseRandomProjection.html
    Fri Oct 10 15:14:36 UTC 2025
      135.8K bytes
      Cache
     
  2. What are Vector Embeddings? | A Comprehensive V...

    Document embeddings represent documents (anything from...embeddings can represent entire documents, as well as image vectors...
    www.elastic.co/what-is/vector-embedding
    Wed Sep 24 00:41:03 UTC 2025
      378.9K bytes
      Cache
     
  3. Topic extraction with Non-negative Matrix Facto...

    only one document or in at least 95% of the documents are removed....text documents using k-means Clustering text documents using...
    scikit-learn.org/stable/auto_examples/applications/plot_topics_extraction_with_nmf_lda.html
    Fri Oct 10 15:14:35 UTC 2025
      118K bytes
      Cache
     
  4. 1.5. Stochastic Gradient Descent — scikit-learn...

    Examples Classification of text documents using sparse features 1.5.5....
    scikit-learn.org/stable/modules/sgd.html
    Fri Oct 10 15:14:35 UTC 2025
      90K bytes
      Cache
     
  5. pairwise_distances_argmin_min — scikit-learn 1....

    ‘yule’] See the documentation for scipy.spatial.distance...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances_argmin_min.html
    Fri Oct 10 15:14:33 UTC 2025
      112.8K bytes
      Cache
     
  6. inplace_csr_row_normalize_l1 — scikit-learn 1.7...

    Skip to main content Back to top Ctrl + K GitHub Choose version inplace_csr_row_normalize_l1 # sklearn.utils.sparsefu...
    scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs_fast.inplace_csr_row_normaliz...
    Thu Oct 09 16:57:49 UTC 2025
      107.8K bytes
      Cache
     
  7. Model selection with Probabilistic PCA and Fact...

    Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and...
    scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_fa_model_selection.html
    Fri Oct 10 15:14:36 UTC 2025
      110.5K bytes
      Cache
     
  8. t-SNE: The effect of various perplexity values ...

    An illustration of t-SNE on the two concentric circles and the S-curve datasets for different perplexity values. We observe a tendency towards clearer shapes as the perplexity value increases. The ...
    scikit-learn.org/stable/auto_examples/manifold/plot_t_sne_perplexity.html
    Fri Oct 10 15:14:35 UTC 2025
      109.6K bytes
      Cache
     
  9. Illustration of Gaussian process classification...

    This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains consi...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_xor.html
    Fri Oct 10 15:14:33 UTC 2025
      97.6K bytes
      Cache
     
  10. feature_extraction.rst.txt

    in the document. Sparsity -------- As most documents will typically...first document.', ... 'This is the second second document.', ......
    scikit-learn.org/stable/_sources/modules/feature_extraction.rst.txt
    Fri Oct 10 15:14:33 UTC 2025
      43.4K bytes
     
Back to top