Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 891 - 900 of 3,423 for document (0.61 seconds)

  1. Version 0.14 — scikit-learn 1.7.2 documen...

    (for scikit-learn) to the documentation. See Choosing the right...users who try it out on tiny document collections. A value of at...
    scikit-learn.org/stable/whats_new/v0.14.html
    Fri Dec 05 17:52:54 GMT 2025
      64.7K bytes
      Cache
     
  2. Ordinary Least Squares and Ridge Regression &#8...

    Ordinary Least Squares: We illustrate how to use the ordinary least squares (OLS) model, LinearRegression, on a single feature of the diabetes dataset. We train on a subset of the data, evaluate on...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ols_ridge.html
    Fri Dec 05 17:52:54 GMT 2025
      106.7K bytes
      Cache
     
  3. L1-based models for Sparse Signals — scik...

    The present example compares three l1-based regression models on a synthetic signal obtained from sparse and correlated features that are further corrupted with additive gaussian noise: a Lasso;, a...
    scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_and_elasticnet.html
    Fri Dec 05 17:52:54 GMT 2025
      125.4K bytes
      Cache
     
  4. Curve Fitting with Bayesian Ridge Regression &#...

    Computes a Bayesian Ridge Regression of Sinusoids. See Bayesian Ridge Regression for more information on the regressor. In general, when fitting a curve with a polynomial by Bayesian ridge regressi...
    scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html
    Fri Dec 05 17:52:55 GMT 2025
      98.1K bytes
      Cache
     
  5. A demo of the mean-shift clustering algorithm &...

    Reference: Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. Generate...
    scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
    Fri Dec 05 17:52:54 GMT 2025
      92.3K bytes
      Cache
     
  6. Categorical Feature Support in Gradient Boostin...

    In this example, we will compare the training times and prediction performances of HistGradientBoostingRegressor with different encoding strategies for categorical features. In particular, we will ...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_categorical.html
    Fri Dec 05 17:52:54 GMT 2025
      125.4K bytes
      Cache
     
  7. Ledoit-Wolf vs OAS estimation — scikit-le...

    The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a...
    scikit-learn.org/stable/auto_examples/covariance/plot_lw_vs_oas.html
    Fri Dec 05 17:52:55 GMT 2025
      103.2K bytes
      Cache
     
  8. Model-based and sequential feature selection &#...

    This example illustrates and compares two approaches for feature selection: SelectFromModel which is based on feature importance, and SequentialFeatureSelector which relies on a greedy approach. We...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_select_from_model_diabetes.html
    Fri Dec 05 17:52:55 GMT 2025
      123.2K bytes
      Cache
     
  9. Gaussian processes on discrete data structures ...

    This example illustrates the use of Gaussian processes for regression and classification tasks on data that are not in fixed-length feature vector form. This is achieved through the use of kernel f...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_on_structured_data.html
    Fri Dec 05 17:52:54 GMT 2025
      120.9K bytes
      Cache
     
  10. Ridge coefficients as a function of the L2 Regu...

    A model that overfits learns the training data too well, capturing both the underlying patterns and the noise in the data. However, when applied to unseen data, the learned associations may not hol...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html
    Fri Dec 05 17:52:54 GMT 2025
      103.3K bytes
      Cache
     
Back to Top