Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 881 - 890 of 1,826 for document (0.08 sec)

  1. Plot classification probability — scikit-learn ...

    Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression (multinomial mu...
    scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html
    Sat Nov 23 04:49:15 UTC 2024
      97.7K bytes
      Cache
     
  2. Nearest Neighbors regression — scikit-learn 1.5...

    Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. Generate sample data: Here we generate ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html
    Sat Nov 23 04:49:16 UTC 2024
      87.6K bytes
      Cache
     
  3. RBF SVM parameters — scikit-learn 1.5.2 documen...

    This example illustrates the effect of the parameters gamma and C of the Radial Basis Function (RBF) kernel SVM. Intuitively, the gamma parameter defines how far the influence of a single training ...
    scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
    Sat Nov 23 04:49:14 UTC 2024
      114.9K bytes
      Cache
     
  4. Nearest Neighbors Classification — scikit-learn...

    This example shows how to use KNeighborsClassifier. We train such a classifier on the iris dataset and observe the difference of the decision boundary obtained with regards to the parameter weights...
    scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
    Sat Nov 23 04:49:16 UTC 2024
      91.8K bytes
      Cache
     
  5. Decision Tree Regression — scikit-learn 1.5.2 d...

    A 1D regression with decision tree. The decision trees is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We ...
    scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html
    Sat Nov 23 04:49:14 UTC 2024
      87.4K bytes
      Cache
     
  6. Lasso and Elastic Net — scikit-learn 1.5.2 docu...

    Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive.,,., Total running time of the script:(0 minutes 0.557 seconds) ...
    scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_coordinate_descent_path.html
    Sat Nov 23 04:49:15 UTC 2024
      98K bytes
      Cache
     
  7. Linear Regression Example — scikit-learn 1.5.2 ...

    The example below uses only the first feature of the diabetes dataset, in order to illustrate the data points within the two-dimensional plot. The straight line can be seen in the plot, showing how...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html
    Sat Nov 23 04:49:16 UTC 2024
      86.1K bytes
      Cache
     
  8. kmeans_plusplus — scikit-learn 1.5.2 documentation

    Gallery examples: An example of K-Means++ initialization
    scikit-learn.org/stable/modules/generated/sklearn.cluster.kmeans_plusplus.html
    Sat Nov 23 04:49:16 UTC 2024
      110.2K bytes
      Cache
     
  9. sklearn.cluster — scikit-learn 1.5.2 documentation

    Popular unsupervised clustering algorithms. User guide. See the Clustering and Biclustering sections for further details.
    scikit-learn.org/stable/api/sklearn.cluster.html
    Sat Nov 23 04:49:15 UTC 2024
      122.2K bytes
      Cache
     
  10. ward_tree — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub ward_tree # sklearn.cluster. ward_tree ( X , * , connectivity = None...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.ward_tree.html
    Sat Nov 23 04:49:16 UTC 2024
      111.5K bytes
      Cache
     
Back to top