- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 881 - 890 of 1,826 for document (0.08 sec)
-
Plot classification probability — scikit-learn ...
Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression (multinomial mu...scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html -
Nearest Neighbors regression — scikit-learn 1.5...
Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. Generate sample data: Here we generate ...scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html -
RBF SVM parameters — scikit-learn 1.5.2 documen...
This example illustrates the effect of the parameters gamma and C of the Radial Basis Function (RBF) kernel SVM. Intuitively, the gamma parameter defines how far the influence of a single training ...scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html -
Nearest Neighbors Classification — scikit-learn...
This example shows how to use KNeighborsClassifier. We train such a classifier on the iris dataset and observe the difference of the decision boundary obtained with regards to the parameter weights...scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html -
Decision Tree Regression — scikit-learn 1.5.2 d...
A 1D regression with decision tree. The decision trees is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We ...scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html -
Lasso and Elastic Net — scikit-learn 1.5.2 docu...
Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive.,,., Total running time of the script:(0 minutes 0.557 seconds) ...scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_coordinate_descent_path.html -
Linear Regression Example — scikit-learn 1.5.2 ...
The example below uses only the first feature of the diabetes dataset, in order to illustrate the data points within the two-dimensional plot. The straight line can be seen in the plot, showing how...scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html -
kmeans_plusplus — scikit-learn 1.5.2 documentation
scikit-learn.org/stable/modules/generated/sklearn.cluster.kmeans_plusplus.html -
sklearn.cluster — scikit-learn 1.5.2 documentation
Popular unsupervised clustering algorithms. User guide. See the Clustering and Biclustering sections for further details.scikit-learn.org/stable/api/sklearn.cluster.html -
ward_tree — scikit-learn 1.5.2 documentation
Skip to main content Back to top Ctrl + K GitHub ward_tree # sklearn.cluster. ward_tree ( X , * , connectivity = None...scikit-learn.org/stable/modules/generated/sklearn.cluster.ward_tree.html