Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 811 - 820 of 3,423 for document (5.89 seconds)

  1. Language Optimization | App Search documentatio...

    « Indexing Documents Guide Log settings guide »...Optimization IMPORTANT : This documentation is no longer updated. Refer...
    www.elastic.co/guide/en/app-search/8.19/language-optimization-guide.html
    Mon Oct 20 16:31:26 GMT 2025
      18.2K bytes
      Cache
     
  2. 2. Unsupervised learning — scikit-learn 1...

    Gaussian mixture models- Gaussian Mixture, Variational Bayesian Gaussian Mixture., Manifold learning- Introduction, Isomap, Locally Linear Embedding, Modified Locally Linear Embedding, Hessian Eige...
    scikit-learn.org/stable/unsupervised_learning.html
    Fri Dec 05 17:52:54 GMT 2025
      37.9K bytes
      Cache
     
  3. Theil-Sen Regression — scikit-learn 1.7.2...

    Computes a Theil-Sen Regression on a synthetic dataset. See Theil-Sen estimator: generalized-median-based estimator for more information on the regressor. Compared to the OLS (ordinary least square...
    scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html
    Fri Dec 05 17:52:55 GMT 2025
      103.2K bytes
      Cache
     
  4. Polynomial and Spline interpolation — sci...

    This example demonstrates how to approximate a function with polynomials up to degree degree by using ridge regression. We show two different ways given n_samples of 1d points x_i: PolynomialFeatur...
    scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html
    Fri Dec 05 17:52:55 GMT 2025
      121.3K bytes
      Cache
     
  5. Gradient Boosting regression — scikit-lea...

    This example demonstrates Gradient Boosting to produce a predictive model from an ensemble of weak predictive models. Gradient boosting can be used for regression and classification problems. Here,...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html
    Fri Dec 05 17:52:54 GMT 2025
      110K bytes
      Cache
     
  6. __sklearn_is_fitted__ as Developer API — ...

    The__sklearn_is_fitted__ method is a convention used in scikit-learn for checking whether an estimator object has been fitted or not. This method is typically implemented in custom estimator classe...
    scikit-learn.org/stable/auto_examples/developing_estimators/sklearn_is_fitted.html
    Fri Dec 05 17:52:55 GMT 2025
      90.3K bytes
      Cache
     
  7. Generalized Linear Models — scikit-learn ...

    Examples concerning the sklearn.linear_model module. Comparing Linear Bayesian Regressors Curve Fitting with Bayesian Ridge Regression Decision Boundaries of Multinomial and One-vs-Rest Logistic Re...
    scikit-learn.org/stable/auto_examples/linear_model/index.html
    Fri Dec 05 17:52:55 GMT 2025
      93.7K bytes
      Cache
     
  8. Recursive feature elimination — scikit-le...

    This example demonstrates how Recursive Feature Elimination ( RFE) can be used to determine the importance of individual pixels for classifying handwritten digits. RFE recursively removes the least...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html
    Fri Dec 05 17:52:55 GMT 2025
      91.4K bytes
      Cache
     
  9. Importance of Feature Scaling — scikit-le...

    Feature scaling through standardization, also called Z-score normalization, is an important preprocessing step for many machine learning algorithms. It involves rescaling each feature such that it ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
    Fri Dec 05 17:52:55 GMT 2025
      122.5K bytes
      Cache
     
  10. Nearest Centroid Classification — scikit-...

    Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.,., Total running time of the script:(0 minutes 0.173 seconds) Launch binder Launch JupyterLite ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html
    Fri Dec 05 17:52:55 GMT 2025
      90.7K bytes
      Cache
     
Back to Top