- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 801 - 810 of 1,824 for document (0.23 sec)
-
load_digits — scikit-learn 1.5.2 documentation
Gallery examples: Release Highlights for scikit-learn 1.3 Recognizing hand-written digits A demo of K-Means clustering on the handwritten digits data Feature agglomeration Various Agglomerative Clu...scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html -
calibration_curve — scikit-learn 1.5.2 document...
Skip to main content Back to top Ctrl + K GitHub calibration_curve # sklearn.calibration. calibration_curve ( y_true ...scikit-learn.org/stable/modules/generated/sklearn.calibration.calibration_curve.html -
all_displays — scikit-learn 1.5.2 documentation
Skip to main content Back to top Ctrl + K GitHub all_displays # sklearn.utils.discovery. all_displays ( ) [source] # ...scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_displays.html -
all_functions — scikit-learn 1.5.2 documentation
Skip to main content Back to top Ctrl + K GitHub all_functions # sklearn.utils.discovery. all_functions ( ) [source] ...scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_functions.html -
weighted_mode — scikit-learn 1.5.2 documentation
Skip to main content Back to top Ctrl + K GitHub weighted_mode # sklearn.utils.extmath. weighted_mode ( a , w , * , a...scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.weighted_mode.html -
check_scalar — scikit-learn 1.5.2 documentation
Skip to main content Back to top Ctrl + K GitHub check_scalar # sklearn.utils. check_scalar ( x , name , target_type ...scikit-learn.org/stable/modules/generated/sklearn.utils.check_scalar.html -
GMM Initialization Methods — scikit-learn 1.5.2...
Examples of the different methods of initialization in Gaussian Mixture Models See Gaussian mixture models for more information on the estimator. Here we generate some sample data with four easy to...scikit-learn.org/stable/auto_examples/mixture/plot_gmm_init.html -
Univariate Feature Selection — scikit-learn 1.5...
This notebook is an example of using univariate feature selection to improve classification accuracy on a noisy dataset. In this example, some noisy (non informative) features are added to the iris...scikit-learn.org/stable/auto_examples/feature_selection/plot_feature_selection.html -
SVM with custom kernel — scikit-learn 1.5.2 doc...
Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. Total running time of the script:(0 minutes 0.093 seconds) Launch binder Lau...scikit-learn.org/stable/auto_examples/svm/plot_custom_kernel.html -
Missing Value Imputation — scikit-learn 1.5.2 d...
Examples concerning the sklearn.impute module. Imputing missing values before building an estimator Imputing missing values with variants of IterativeImputerscikit-learn.org/stable/auto_examples/impute/index.html