Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 791 - 800 of 1,824 for document (0.24 sec)

  1. Imputing missing values before building an esti...

    Missing values can be replaced by the mean, the median or the most frequent value using the basic SimpleImputer. In this example we will investigate different imputation techniques: imputation by t...
    scikit-learn.org/stable/auto_examples/impute/plot_missing_values.html
    Fri Nov 22 23:53:27 UTC 2024
      120.5K bytes
      Cache
     
  2. 1.10. Decision Trees — scikit-learn 1.5.2 docum...

    Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning s...
    scikit-learn.org/stable/modules/tree.html
    Fri Nov 22 23:53:26 UTC 2024
      91.5K bytes
      Cache
     
  3. 1.16. Probability calibration — scikit-learn 1....

    When performing classification you often want not only to predict the class label, but also obtain a probability of the respective label. This probability gives you some kind of confidence on the p...
    scikit-learn.org/stable/modules/calibration.html
    Fri Nov 22 23:53:26 UTC 2024
      63.1K bytes
      Cache
     
  4. 2.8. Density Estimation — scikit-learn 1.5.2 do...

    Density estimation walks the line between unsupervised learning, feature engineering, and data modeling. Some of the most popular and useful density estimation techniques are mixture models such as...
    scikit-learn.org/stable/modules/density.html
    Fri Nov 22 23:53:27 UTC 2024
      45.7K bytes
      Cache
     
  5. Release History — scikit-learn 1.5.2 documentation

    Changelogs and release notes for all scikit-learn releases are linked in this page. Version 1.5- Version 1.5.2, Version 1.5.1, Version 1.5.0., Version 1.4- Version 1.4.2, Version 1.4.1, Version 1.4...
    scikit-learn.org/stable/whats_new.html
    Fri Nov 22 23:53:27 UTC 2024
      32.5K bytes
      Cache
     
  6. Developing Estimators — scikit-learn 1.5.2 docu...

    Examples concerning the development of Custom Estimator.__sklearn_is_fitted__ as Developer API
    scikit-learn.org/stable/auto_examples/developing_estimators/index.html
    Fri Nov 22 23:53:27 UTC 2024
      75.8K bytes
      Cache
     
  7. Logistic function — scikit-learn 1.5.2 document...

    Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logistic curve. Total running time of the scrip...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic.html
    Fri Nov 22 23:53:26 UTC 2024
      91.1K bytes
      Cache
     
  8. Kernel Approximation — scikit-learn 1.5.2 docum...

    Examples concerning the sklearn.kernel_approximation module. Scalable learning with polynomial kernel approximation
    scikit-learn.org/stable/auto_examples/kernel_approximation/index.html
    Fri Nov 22 23:53:26 UTC 2024
      76.1K bytes
      Cache
     
  9. Feature discretization — scikit-learn 1.5.2 doc...

    A demonstration of feature discretization on synthetic classification datasets. Feature discretization decomposes each feature into a set of bins, here equally distributed in width. The discrete va...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_classification.html
    Fri Nov 22 23:53:27 UTC 2024
      123.6K bytes
      Cache
     
  10. Incremental PCA — scikit-learn 1.5.2 documentation

    Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA build...
    scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html
    Fri Nov 22 23:53:26 UTC 2024
      87.3K bytes
      Cache
     
Back to top