Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 791 - 800 of 1,549 for document (1.48 sec)

  1. Linear and Quadratic Discriminant Analysis with...

    This example plots the covariance ellipsoids of each class and the decision boundary learned by LinearDiscriminantAnalysis(LDA) and QuadraticDiscriminantAnalysis(QDA). The ellipsoids display the do...
    scikit-learn.org/stable/auto_examples/classification/plot_lda_qda.html
    Sat Aug 23 16:32:04 UTC 2025
      118.5K bytes
      Cache
     
  2. Class Likelihood Ratios to measure classificati...

    This example demonstrates the class_likelihood_ratios function, which computes the positive and negative likelihood ratios ( LR+, LR-) to assess the predictive power of a binary classifier. As we w...
    scikit-learn.org/stable/auto_examples/model_selection/plot_likelihood_ratios.html
    Sat Aug 23 16:32:03 UTC 2025
      143.3K bytes
      Cache
     
  3. Comparison between grid search and successive h...

    This example compares the parameter search performed by HalvingGridSearchCV and GridSearchCV. We first define the parameter space for an SVC estimator, and compute the time required to train a Halv...
    scikit-learn.org/stable/auto_examples/model_selection/plot_successive_halving_heatmap.html
    Sat Aug 23 16:32:04 UTC 2025
      106K bytes
      Cache
     
  4. HuberRegressor vs Ridge on dataset with strong ...

    Fit Ridge and HuberRegressor on a dataset with outliers. The example shows that the predictions in ridge are strongly influenced by the outliers present in the dataset. The Huber regressor is less ...
    scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html
    Sat Aug 23 16:32:03 UTC 2025
      95.1K bytes
      Cache
     
  5. Robust linear model estimation using RANSAC — s...

    In this example, we see how to robustly fit a linear model to faulty data using the RANSAC algorithm. The ordinary linear regressor is sensitive to outliers, and the fitted line can easily be skewe...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ransac.html
    Sat Aug 23 16:32:04 UTC 2025
      93.4K bytes
      Cache
     
  6. Label Propagation digits: Active learning — sci...

    Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top fiv...
    scikit-learn.org/stable/auto_examples/semi_supervised/plot_label_propagation_digits_active_learni...
    Sat Aug 23 16:32:04 UTC 2025
      109.1K bytes
      Cache
     
  7. Label Propagation digits: Demonstrating perform...

    This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets of very few labels. The handwritten digit dataset has 179...
    scikit-learn.org/stable/auto_examples/semi_supervised/plot_label_propagation_digits.html
    Sat Aug 23 16:32:03 UTC 2025
      99.4K bytes
      Cache
     
  8. Multi-class AdaBoosted Decision Trees — scikit-...

    This example shows how boosting can improve the prediction accuracy on a multi-label classification problem. It reproduces a similar experiment as depicted by Figure 1 in Zhu et al 1. The core prin...
    scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_multiclass.html
    Sat Aug 23 16:32:04 UTC 2025
      115.1K bytes
      Cache
     
  9. SVM: Maximum margin separating hyperplane — sci...

    Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. Total running time of the script:(0 minutes 0.066 se...
    scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html
    Sat Aug 23 16:32:04 UTC 2025
      87.7K bytes
      Cache
     
  10. 2.2. Manifold learning — scikit-learn 1.7.1 doc...

    Look for the bare necessities, The simple bare necessities, Forget about your worries and your strife, I mean the bare necessities, Old Mother Nature’s recipes, That bring the bare necessities of l...
    scikit-learn.org/stable/modules/manifold.html
    Sat Aug 23 16:32:04 UTC 2025
      86.1K bytes
      Cache
     
Back to top