Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 731 - 740 of 1,682 for document (0.5 sec)

  1. Ensemble methods — scikit-learn 1.6.1 documenta...

    Examples concerning the sklearn.ensemble module. Categorical Feature Support in Gradient Boosting Combine predictors using stacking Comparing Random Forests and Histogram Gradient Boosting models C...
    scikit-learn.org/stable/auto_examples/ensemble/index.html
    Sat Apr 19 00:31:20 UTC 2025
      89.1K bytes
      Cache
     
  2. Feature Selection — scikit-learn 1.6.1 document...

    Examples concerning the sklearn.feature_selection module. Comparison of F-test and mutual information Model-based and sequential feature selection Pipeline ANOVA SVM Recursive feature elimination R...
    scikit-learn.org/stable/auto_examples/feature_selection/index.html
    Sat Apr 19 00:31:22 UTC 2025
      76.9K bytes
      Cache
     
  3. Decision Trees — scikit-learn 1.6.1 documentation

    Examples concerning the sklearn.tree module. Decision Tree Regression Plot the decision surface of decision trees trained on the iris dataset Post pruning decision trees with cost complexity prunin...
    scikit-learn.org/stable/auto_examples/tree/index.html
    Sat Apr 19 00:31:21 UTC 2025
      75.6K bytes
      Cache
     
  4. Multiclass methods — scikit-learn 1.6.1 documen...

    Examples concerning the sklearn.multiclass module. Overview of multiclass training meta-estimators
    scikit-learn.org/stable/auto_examples/multiclass/index.html
    Sat Apr 19 00:31:22 UTC 2025
      73.7K bytes
      Cache
     
  5. Multioutput methods — scikit-learn 1.6.1 docume...

    Examples concerning the sklearn.multioutput module. Multilabel classification using a classifier chain
    scikit-learn.org/stable/auto_examples/multioutput/index.html
    Sat Apr 19 00:31:22 UTC 2025
      73.8K bytes
      Cache
     
  6. is_classifier — scikit-learn 1.6.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version is_classifier # sklearn.base. is_classifier ( estimat...
    scikit-learn.org/stable/modules/generated/sklearn.base.is_classifier.html
    Sat Apr 19 00:31:22 UTC 2025
      106.5K bytes
      Cache
     
  7. Sparse inverse covariance estimation — scikit-l...

    Using the GraphicalLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision mat...
    scikit-learn.org/stable/auto_examples/covariance/plot_sparse_cov.html
    Sat Apr 19 00:31:22 UTC 2025
      108.3K bytes
      Cache
     
  8. SGD: Weighted samples — scikit-learn 1.6.1 docu...

    Plot decision function of a weighted dataset, where the size of points is proportional to its weight. Total running time of the script:(0 minutes 0.077 seconds) Launch binder Launch JupyterLite Dow...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html
    Sat Apr 19 00:31:22 UTC 2025
      93.4K bytes
      Cache
     
  9. Gaussian Process for Machine Learning — scikit-...

    Examples concerning the sklearn.gaussian_process module. Ability of Gaussian process regression (GPR) to estimate data noise-level Comparison of kernel ridge and Gaussian process regression Forecas...
    scikit-learn.org/stable/auto_examples/gaussian_process/index.html
    Sat Apr 19 00:31:21 UTC 2025
      80.3K bytes
      Cache
     
  10. Two-class AdaBoost — scikit-learn 1.6.1 documen...

    This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two “Gaussian quantiles” clusters (see sklearn.datasets.make_gaussian_quantiles) and pl...
    scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html
    Sat Apr 19 00:31:22 UTC 2025
      102K bytes
      Cache
     
Back to top