Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 721 - 730 of 1,702 for document (0.08 sec)

  1. sparse_encode — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version sparse_encode # sklearn.decomposition. sparse_encode ...
    scikit-learn.org/stable/modules/generated/sklearn.decomposition.sparse_encode.html
    Thu Jul 03 11:42:06 UTC 2025
      118.6K bytes
      Cache
     
  2. sklearn.calibration — scikit-learn 1.7.0 docume...

    Methods for calibrating predicted probabilities. User guide. See the Probability calibration section for further details. Visualization:
    scikit-learn.org/stable/api/sklearn.calibration.html
    Thu Jul 03 11:42:05 UTC 2025
      115.4K bytes
      Cache
     
  3. export_text — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version export_text # sklearn.tree. export_text ( decision_tr...
    scikit-learn.org/stable/modules/generated/sklearn.tree.export_text.html
    Thu Jul 03 11:42:05 UTC 2025
      110.7K bytes
      2 views
      Cache
     
  4. Nested versus non-nested cross-validation — sci...

    This example compares non-nested and nested cross-validation strategies on a classifier of the iris data set. Nested cross-validation (CV) is often used to train a model in which hyperparameters al...
    scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
    Thu Jul 03 11:42:06 UTC 2025
      102.2K bytes
      Cache
     
  5. Principal Component Analysis (PCA) on Iris Data...

    This example shows a well known decomposition technique known as Principal Component Analysis (PCA) on the Iris dataset. This dataset is made of 4 features: sepal length, sepal width, petal length,...
    scikit-learn.org/stable/auto_examples/decomposition/plot_pca_iris.html
    Thu Jul 03 11:42:05 UTC 2025
      93.3K bytes
      Cache
     
  6. Probabilistic predictions with Gaussian process...

    This example illustrates the predicted probability of GPC for an RBF kernel with different choices of the hyperparameters. The first figure shows the predicted probability of GPC with arbitrarily c...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc.html
    Thu Jul 03 11:42:05 UTC 2025
      110.7K bytes
      Cache
     
  7. Outlier detection with Local Outlier Factor (LO...

    The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly detection method which computes the local density deviation of a given data point with respect to its neighbors. It considers as ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html
    Thu Jul 03 11:42:05 UTC 2025
      98.5K bytes
      Cache
     
  8. Demonstration of k-means assumptions — scikit-l...

    the example Clustering text documents using k-means ). In the case...
    scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html
    Thu Jul 03 11:42:05 UTC 2025
      115.6K bytes
      Cache
     
  9. Version 0.24 — scikit-learn 1.7.0 documentation

    previously didn’t work as documented – or according to reasonable...by Nathan C. . Code and documentation contributors Thanks to everyone...
    scikit-learn.org/stable/whats_new/v0.24.html
    Thu Jul 03 11:42:05 UTC 2025
      205.5K bytes
      Cache
     
  10. 3.4. Metrics and scoring: quantifying the quali...

    estimator can be found in its documentation. Scoring parameter : Model-evaluation...See Classification of text documents using sparse features for...
    scikit-learn.org/stable/modules/model_evaluation.html
    Thu Jul 03 11:42:05 UTC 2025
      417.3K bytes
      Cache
     
Back to top