Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 711 - 720 of 1,549 for document (0.34 sec)

  1. sklearn.utils — scikit-learn 1.7.1 documentation

    Various utilities to help with development. Developer guide. See the Utilities for Developers section for further details. Input and parameter validation: Functions to validate input and parameters...
    scikit-learn.org/stable/api/sklearn.utils.html
    Fri Aug 22 18:00:32 UTC 2025
      149.5K bytes
      Cache
     
  2. process_routing — scikit-learn 1.7.1 documentation

    Gallery examples: Metadata Routing
    scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.process_routing.html
    Fri Aug 22 18:00:33 UTC 2025
      108.8K bytes
      Cache
     
  3. 6. Visualizations — scikit-learn 1.7.1 document...

    Scikit-learn defines a simple API for creating visualizations for machine learning. The key feature of this API is to allow for quick plotting and visual adjustments without recalculation. We provi...
    scikit-learn.org/stable/visualizations.html
    Sat Aug 23 16:32:03 UTC 2025
      50K bytes
      Cache
     
  4. Gradient Boosting regularization — scikit-learn...

    Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009 1. The loss function used is binomial deviance. Regularization v...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html
    Sat Aug 23 16:32:03 UTC 2025
      96.3K bytes
      Cache
     
  5. Model Complexity Influence — scikit-learn 1.7.1...

    Demonstrate how model complexity influences both prediction accuracy and computational performance. We will be using two datasets:,- Diabetes dataset for regression. This dataset consists of 10 mea...
    scikit-learn.org/stable/auto_examples/applications/plot_model_complexity_influence.html
    Sat Aug 23 16:32:03 UTC 2025
      126K bytes
      1 views
      Cache
     
  6. Compare BIRCH and MiniBatchKMeans — scikit-lear...

    This example compares the timing of BIRCH (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 25,000 samples and 2 features generated using make_blobs. B...
    scikit-learn.org/stable/auto_examples/cluster/plot_birch_vs_minibatchkmeans.html
    Sat Aug 23 16:32:03 UTC 2025
      105K bytes
      Cache
     
  7. Probability Calibration curves — scikit-learn 1...

    When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This examp...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration_curve.html
    Sat Aug 23 16:32:04 UTC 2025
      143.5K bytes
      Cache
     
  8. Semi Supervised Classification — scikit-learn 1...

    Examples concerning the sklearn.semi_supervised module. Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset Effect of varying threshold for self-training Label Propagati...
    scikit-learn.org/stable/auto_examples/semi_supervised/index.html
    Sat Aug 23 16:32:03 UTC 2025
      77.1K bytes
      Cache
     
  9. make_classification — scikit-learn 1.7.1 docume...

    Gallery examples: Probability Calibration curves Comparison of Calibration of Classifiers Classifier comparison OOB Errors for Random Forests Feature transformations with ensembles of trees Feature...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
    Sat Aug 23 16:32:03 UTC 2025
      135.8K bytes
      Cache
     
  10. jaccard_score — scikit-learn 1.7.1 documentation

    Gallery examples: Multilabel classification using a classifier chain
    scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
    Sat Aug 23 16:32:03 UTC 2025
      120.3K bytes
      Cache
     
Back to top