Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 691 - 700 of 1,745 for document (0.49 sec)

  1. Importance of Feature Scaling — scikit-learn 1....

    Feature scaling through standardization, also called Z-score normalization, is an important preprocessing step for many machine learning algorithms. It involves rescaling each feature such that it ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
    Sat Oct 11 07:51:27 UTC 2025
      122.5K bytes
      Cache
     
  2. SVM Margins Example — scikit-learn 1.7.2 docume...

    The plots below illustrate the effect the parameter C has on the separation line. A large value of C basically tells our model that we do not have that much faith in our data’s distribution, and wi...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html
    Sat Oct 11 07:51:26 UTC 2025
      99.9K bytes
      Cache
     
  3. classification_report — scikit-learn 1.7.2 docu...

    Gallery examples: Faces recognition example using eigenfaces and SVMs Recognizing hand-written digits Column Transformer with Heterogeneous Data Sources Pipeline ANOVA SVM Custom refit strategy of ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
    Sat Oct 11 07:51:26 UTC 2025
      120.8K bytes
      Cache
     
  4. log_loss — scikit-learn 1.7.2 documentation

    Gallery examples: Probability Calibration curves Probability Calibration for 3-class classification Plot classification probability Gradient Boosting Out-of-Bag estimates Gradient Boosting regulari...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
    Sat Oct 11 07:51:26 UTC 2025
      115.7K bytes
      Cache
     
  5. det_curve — scikit-learn 1.7.2 documentation

    Gallery examples: Detection error tradeoff (DET) curve
    scikit-learn.org/stable/modules/generated/sklearn.metrics.det_curve.html
    Sat Oct 11 07:51:25 UTC 2025
      113.8K bytes
      Cache
     
  6. roc_curve — scikit-learn 1.7.2 documentation

    Gallery examples: Species distribution modeling Visualizations with Display Objects Detection error tradeoff (DET) curve Multiclass Receiver Operating Characteristic (ROC)
    scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
    Sat Oct 11 07:51:26 UTC 2025
      117K bytes
      Cache
     
  7. matthews_corrcoef — scikit-learn 1.7.2 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version matthews_corrcoef # sklearn.metrics. matthews_corrcoe...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
    Sat Oct 11 07:51:26 UTC 2025
      109.2K bytes
      Cache
     
  8. Polynomial and Spline interpolation — scikit-le...

    This example demonstrates how to approximate a function with polynomials up to degree degree by using ridge regression. We show two different ways given n_samples of 1d points x_i: PolynomialFeatur...
    scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html
    Sat Oct 11 07:51:26 UTC 2025
      121.3K bytes
      Cache
     
  9. Generalized Linear Models — scikit-learn 1.7.2 ...

    Examples concerning the sklearn.linear_model module. Comparing Linear Bayesian Regressors Curve Fitting with Bayesian Ridge Regression Decision Boundaries of Multinomial and One-vs-Rest Logistic Re...
    scikit-learn.org/stable/auto_examples/linear_model/index.html
    Sat Oct 11 07:51:26 UTC 2025
      93.7K bytes
      Cache
     
  10. Recursive feature elimination — scikit-learn 1....

    This example demonstrates how Recursive Feature Elimination ( RFE) can be used to determine the importance of individual pixels for classifying handwritten digits. RFE recursively removes the least...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html
    Sat Oct 11 07:51:27 UTC 2025
      91.4K bytes
      Cache
     
Back to top