Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 661 - 670 of 1,745 for document (0.53 sec)

  1. A demo of the mean-shift clustering algorithm —...

    Reference: Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. Generate...
    scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
    Fri Oct 10 15:14:35 UTC 2025
      92.3K bytes
      Cache
     
  2. 7.3. Preprocessing data — scikit-learn 1.7.2 do...

    The sklearn.preprocessing package provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream esti...
    scikit-learn.org/stable/modules/preprocessing.html
    Sat Oct 11 07:51:25 UTC 2025
      198.2K bytes
      Cache
     
  3. 1.13. Feature selection — scikit-learn 1.7.2 do...

    The classes in the sklearn.feature_selection module can be used for feature selection/dimensionality reduction on sample sets, either to improve estimators’ accuracy scores or to boost their perfor...
    scikit-learn.org/stable/modules/feature_selection.html
    Sat Oct 11 07:51:26 UTC 2025
      73.8K bytes
      Cache
     
  4. 2.8. Density Estimation — scikit-learn 1.7.2 do...

    Density estimation walks the line between unsupervised learning, feature engineering, and data modeling. Some of the most popular and useful density estimation techniques are mixture models such as...
    scikit-learn.org/stable/modules/density.html
    Sat Oct 11 07:51:27 UTC 2025
      45.5K bytes
      Cache
     
  5. 1.16. Probability calibration — scikit-learn 1....

    When performing classification you often want not only to predict the class label, but also obtain a probability of the respective label. This probability gives you some kind of confidence on the p...
    scikit-learn.org/stable/modules/calibration.html
    Sat Oct 11 07:51:26 UTC 2025
      63.3K bytes
      Cache
     
  6. 1.10. Decision Trees — scikit-learn 1.7.2 docum...

    Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning s...
    scikit-learn.org/stable/modules/tree.html
    Sat Oct 11 07:51:25 UTC 2025
      94.5K bytes
      Cache
     
  7. Adaptive relevance API reference (beta) | App S...

    (beta) IMPORTANT : This documentation is no longer updated. Refer...version policy and the latest documentation . Adaptive relevance API...
    www.elastic.co/guide/en/app-search/current/adaptive-relevance-api-reference.html
    Tue Jul 29 14:26:40 UTC 2025
      67.7K bytes
      Cache
     
  8. IsolationForest example — scikit-learn 1.7.2 do...

    Documentation for IsolationForest i Fitted...
    scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html
    Fri Oct 10 15:14:35 UTC 2025
      125.9K bytes
      Cache
     
  9. Release Highlights for scikit-learn 1.0 — sciki...

    reader to go to the API documentation and to check each and every...HistGradientBoosting New documentation improvements # This release...
    scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_0_0.html
    Fri Oct 10 15:14:35 UTC 2025
      114.8K bytes
      Cache
     
  10. Demonstration of k-means assumptions — scikit-l...

    the example Clustering text documents using k-means ). In the case...
    scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html
    Fri Oct 10 15:14:36 UTC 2025
      115.6K bytes
      Cache
     
Back to top