Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 651 - 660 of 1,825 for document (0.12 sec)

  1. Plot classification probability — scikit-learn ...

    Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression (multinomial mu...
    scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html
    Fri Nov 22 23:53:26 UTC 2024
      97.7K bytes
      Cache
     
  2. Decision Tree Regression — scikit-learn 1.5.2 d...

    A 1D regression with decision tree. The decision trees is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We ...
    scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html
    Fri Nov 22 23:53:27 UTC 2024
      87.4K bytes
      Cache
     
  3. confusion_matrix — scikit-learn 1.5.2 documenta...

    Gallery examples: Release Highlights for scikit-learn 1.5 Visualizations with Display Objects Post-tuning the decision threshold for cost-sensitive learning Label Propagation digits active learning
    scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
    Fri Nov 22 23:53:27 UTC 2024
      116.7K bytes
      Cache
     
  4. export_text — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub export_text # sklearn.tree. export_text ( decision_tree , * , featur...
    scikit-learn.org/stable/modules/generated/sklearn.tree.export_text.html
    Fri Nov 22 23:53:26 UTC 2024
      109.7K bytes
      Cache
     
  5. sklearn.utils — scikit-learn 1.7.dev0 documenta...

    Various utilities to help with development. Developer guide. See the Utilities for Developers section for further details. Input and parameter validation: Functions to validate input and parameters...
    scikit-learn.org/dev/api/sklearn.utils.html
    Fri Nov 22 23:53:28 UTC 2024
      149.8K bytes
      Cache
     
  6. f1_score — scikit-learn 1.5.2 documentation

    Gallery examples: Probability Calibration curves Precision-Recall Semi-supervised Classification on a Text Dataset
    scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
    Fri Nov 22 23:53:27 UTC 2024
      124.3K bytes
      Cache
     
  7. sklearn.decomposition — scikit-learn 1.5.2 docu...

    Matrix decomposition algorithms. These include PCA, NMF, ICA, and more. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. User guide. See the Decomposing...
    scikit-learn.org/stable/api/sklearn.decomposition.html
    Fri Nov 22 23:53:27 UTC 2024
      120.4K bytes
      Cache
     
  8. kmeans_plusplus — scikit-learn 1.5.2 documentation

    Gallery examples: An example of K-Means++ initialization
    scikit-learn.org/stable/modules/generated/sklearn.cluster.kmeans_plusplus.html
    Fri Nov 22 23:53:26 UTC 2024
      110.2K bytes
      Cache
     
  9. pairwise_kernels — scikit-learn 1.5.2 documenta...

    Skip to main content Back to top Ctrl + K GitHub pairwise_kernels # sklearn.metrics.pairwise. pairwise_kernels ( X , ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_kernels.html
    Fri Nov 22 23:53:27 UTC 2024
      110.1K bytes
      Cache
     
  10. sklearn.calibration — scikit-learn 1.5.2 docume...

    Methods for calibrating predicted probabilities. User guide. See the Probability calibration section for further details. Visualization:
    scikit-learn.org/stable/api/sklearn.calibration.html
    Fri Nov 22 23:53:26 UTC 2024
      114.4K bytes
      Cache
     
Back to top