Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 531 - 540 of 1,745 for document (1.06 sec)

  1. 3. Model selection and evaluation — scikit-lear...

    Cross-validation: evaluating estimator performance- Computing cross-validated metrics, Cross validation iterators, A note on shuffling, Cross validation and model selection, Permutation test score....
    scikit-learn.org/stable/model_selection.html
    Fri Oct 10 15:14:36 UTC 2025
      34.4K bytes
      Cache
     
  2. Scalable learning with polynomial kernel approx...

    This example illustrates the use of PolynomialCountSketch to efficiently generate polynomial kernel feature-space approximations. This is used to train linear classifiers that approximate the accur...
    scikit-learn.org/stable/auto_examples/kernel_approximation/plot_scalable_poly_kernels.html
    Fri Oct 10 15:14:35 UTC 2025
      115.5K bytes
      Cache
     
  3. Dimensionality Reduction with Neighborhood Comp...

    Sample usage of Neighborhood Components Analysis for dimensionality reduction. This example compares different (linear) dimensionality reduction methods applied on the Digits data set. The data set...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html
    Fri Oct 10 15:14:35 UTC 2025
      98.2K bytes
      Cache
     
  4. class_likelihood_ratios — scikit-learn 1.7.2 do...

    Gallery examples: Class Likelihood Ratios to measure classification performance
    scikit-learn.org/stable/modules/generated/sklearn.metrics.class_likelihood_ratios.html
    Fri Oct 10 15:14:36 UTC 2025
      122.5K bytes
      Cache
     
  5. get_scorer_names — scikit-learn 1.7.2 documenta...

    Skip to main content Back to top Ctrl + K GitHub Choose version get_scorer_names # sklearn.metrics. get_scorer_names ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.get_scorer_names.html
    Fri Oct 10 15:14:33 UTC 2025
      105.5K bytes
      Cache
     
  6. d2_tweedie_score — scikit-learn 1.7.2 documenta...

    Skip to main content Back to top Ctrl + K GitHub Choose version d2_tweedie_score # sklearn.metrics. d2_tweedie_score ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.d2_tweedie_score.html
    Fri Oct 10 15:14:36 UTC 2025
      110.1K bytes
      Cache
     
  7. Using KBinsDiscretizer to discretize continuous...

    The example compares prediction result of linear regression (linear model) and decision tree (tree based model) with and without discretization of real-valued features. As is shown in the result be...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization.html
    Fri Oct 10 15:14:33 UTC 2025
      98.1K bytes
      Cache
     
  8. cluster_optics_xi — scikit-learn 1.7.2 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version cluster_optics_xi # sklearn.cluster. cluster_optics_x...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.cluster_optics_xi.html
    Fri Oct 10 15:14:33 UTC 2025
      112.7K bytes
      Cache
     
  9. cluster_optics_dbscan — scikit-learn 1.7.2 docu...

    Gallery examples: Demo of OPTICS clustering algorithm
    scikit-learn.org/stable/modules/generated/sklearn.cluster.cluster_optics_dbscan.html
    Fri Oct 10 15:14:35 UTC 2025
      112K bytes
      Cache
     
  10. compute_class_weight — scikit-learn 1.7.2 docum...

    Skip to main content Back to top Ctrl + K GitHub Choose version compute_class_weight # sklearn.utils.class_weight. co...
    scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
    Fri Oct 10 15:14:33 UTC 2025
      108.3K bytes
      Cache
     
Back to top