Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 521 - 530 of 1,679 for document (2.97 sec)

  1. randomized_svd — scikit-learn 1.6.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version randomized_svd # sklearn.utils.extmath. randomized_sv...
    scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.randomized_svd.html
    Sat Apr 19 00:31:21 UTC 2025
      117.8K bytes
      Cache
     
  2. make_checkerboard — scikit-learn 1.6.1 document...

    Gallery examples: A demo of the Spectral Biclustering algorithm
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_checkerboard.html
    Sat Apr 19 00:31:22 UTC 2025
      112.2K bytes
      Cache
     
  3. show_versions — scikit-learn 1.6.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version show_versions # sklearn. show_versions ( ) [source] #...
    scikit-learn.org/stable/modules/generated/sklearn.show_versions.html
    Sat Apr 19 00:31:21 UTC 2025
      104.8K bytes
      Cache
     
  4. Importance of Feature Scaling — scikit-learn 1....

    Feature scaling through standardization, also called Z-score normalization, is an important preprocessing step for many machine learning algorithms. It involves rescaling each feature such that it ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
    Sat Apr 19 00:31:21 UTC 2025
      122.1K bytes
      Cache
     
  5. Pipelines and composite estimators — scikit-lea...

    Examples of how to compose transformers and pipelines from other estimators. See the User Guide. Column Transformer with Heterogeneous Data Sources Column Transformer with Mixed Types Concatenating...
    scikit-learn.org/stable/auto_examples/compose/index.html
    Sat Apr 19 00:31:20 UTC 2025
      77.5K bytes
      Cache
     
  6. SGD: Penalties — scikit-learn 1.6.1 documentation

    Contours of where the penalty is equal to 1 for the three penalties L1, L2 and elastic-net. All of the above are supported by SGDClassifier and SGDRegressor. Total running time of the script:(0 min...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_penalties.html
    Sat Apr 19 00:31:22 UTC 2025
      92.4K bytes
      Cache
     
  7. SVM Margins Example — scikit-learn 1.6.1 docume...

    The plots below illustrate the effect the parameter C has on the separation line. A large value of C basically tells our model that we do not have that much faith in our data’s distribution, and wi...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html
    Sat Apr 19 00:31:22 UTC 2025
      100K bytes
      Cache
     
  8. Nearest Centroid Classification — scikit-learn ...

    Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.,., Total running time of the script:(0 minutes 0.168 seconds) Launch binder Launch JupyterLite ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html
    Sat Apr 19 00:31:21 UTC 2025
      90.7K bytes
      Cache
     
  9. sklearn.ensemble — scikit-learn 1.6.1 documenta...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Sat Apr 19 00:31:22 UTC 2025
      121.5K bytes
      Cache
     
  10. sklearn.multioutput — scikit-learn 1.6.1 docume...

    Multioutput regression and classification. The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their constructor. The meta-estimator extends ...
    scikit-learn.org/stable/api/sklearn.multioutput.html
    Sat Apr 19 00:31:22 UTC 2025
      116.7K bytes
      Cache
     
Back to top