Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 521 - 530 of 3,542 for document (4.07 seconds)

  1. Custom refit strategy of a grid search with cro...

    Documentation for GridSearchCV i Fitted...SVC(C=1, gamma=0.001) SVC ? Documentation for SVC Parameters C C:...
    scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html
    Mon Jan 26 11:09:14 GMT 2026
      156.8K bytes
      Cache
     
  2. Spectral clustering for image segmentation &#82...

    In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the Spectral clustering approach solves the problem know as...
    scikit-learn.org/stable/auto_examples/cluster/plot_segmentation_toy.html
    Mon Jan 26 11:09:17 GMT 2026
      100.1K bytes
      Cache
     
  3. 7.7. Kernel Approximation — scikit-learn ...

    This submodule contains functions that approximate the feature mappings that correspond to certain kernels, as they are used for example in support vector machines (see Support Vector Machines). Th...
    scikit-learn.org/stable/modules/kernel_approximation.html
    Mon Jan 26 11:09:17 GMT 2026
      62.3K bytes
      Cache
     
  4. An example of K-Means++ initialization — ...

    An example to show the output of the sklearn.cluster.kmeans_plusplus function for generating initial seeds for clustering. K-Means++ is used as the default initialization for K-means. Total running...
    scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_plusplus.html
    Mon Jan 26 11:09:14 GMT 2026
      88K bytes
      Cache
     
  5. Demo of DBSCAN clustering algorithm — sci...

    DBSCAN (Density-Based Spatial Clustering of Applications with Noise) finds core samples in regions of high density and expands clusters from them. This algorithm is good for data which contains clu...
    scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
    Mon Jan 26 11:09:12 GMT 2026
      102.8K bytes
      Cache
     
  6. 1.8. Cross decomposition — scikit-learn 1...

    The cross decomposition module contains supervised estimators for dimensionality reduction and regression, belonging to the “Partial Least Squares” family. Cross decomposition algorithms find the f...
    scikit-learn.org/stable/modules/cross_decomposition.html
    Mon Jan 26 11:09:17 GMT 2026
      55.6K bytes
      Cache
     
  7. 1.15. Isotonic regression — scikit-learn ...

    The class IsotonicRegression fits a non-decreasing real function to 1-dimensional data. It solves the following problem:\min \sum_i w_i (y_i - \hat{y}_i)^2 subject to\hat{y}_i \le \hat{y}_j wheneve...
    scikit-learn.org/stable/modules/isotonic.html
    Mon Jan 26 11:09:14 GMT 2026
      33K bytes
      Cache
     
  8. Time-related feature engineering — scikit...

    This notebook introduces different strategies to leverage time-related features for a bike sharing demand regression task that is highly dependent on business cycles (days, weeks, months) and yearl...
    scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
    Mon Jan 26 11:09:14 GMT 2026
      216K bytes
      Cache
     
  9. Plot Hierarchical Clustering Dendrogram —...

    This example plots the corresponding dendrogram of a hierarchical clustering using AgglomerativeClustering and the dendrogram method available in scipy. Total running time of the script:(0 minutes ...
    scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html
    Mon Jan 26 11:09:14 GMT 2026
      89.4K bytes
      Cache
     
  10. FastICA on 2D point clouds — scikit-learn...

    This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. Independent component analysis (ICA) vs Principal component analysi...
    scikit-learn.org/stable/auto_examples/decomposition/plot_ica_vs_pca.html
    Mon Jan 26 11:09:12 GMT 2026
      103K bytes
      Cache
     
Back to Top