Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 411 - 420 of 1,705 for document (0.22 sec)

  1. density — scikit-learn 1.7.0 documentation

    # Classification of text documents using sparse features Classification...Classification of text documents using sparse features On this page...
    scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.density.html
    Thu Jul 03 11:42:05 UTC 2025
      106.9K bytes
      Cache
     
  2. Developing Estimators — scikit-learn 1.7.0 docu...

    Examples concerning the development of Custom Estimator.__sklearn_is_fitted__ as Developer API
    scikit-learn.org/stable/auto_examples/developing_estimators/index.html
    Thu Jul 03 11:42:05 UTC 2025
      73.4K bytes
      Cache
     
  3. Incremental PCA — scikit-learn 1.7.0 documentation

    Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA build...
    scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html
    Thu Jul 03 11:42:05 UTC 2025
      91.5K bytes
      Cache
     
  4. Feature discretization — scikit-learn 1.7.0 doc...

    A demonstration of feature discretization on synthetic classification datasets. Feature discretization decomposes each feature into a set of bins, here equally distributed in width. The discrete va...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_classification.html
    Thu Jul 03 11:42:06 UTC 2025
      128.7K bytes
      Cache
     
  5. GMM covariances — scikit-learn 1.7.0 documentation

    Demonstration of several covariances types for Gaussian mixture models. See Gaussian mixture models for more information on the estimator. Although GMM are often used for clustering, we can compare...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html
    Thu Jul 03 11:42:05 UTC 2025
      108.4K bytes
      Cache
     
  6. Logistic function — scikit-learn 1.7.0 document...

    Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logistic curve. Total running time of the scrip...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic.html
    Thu Jul 03 11:42:06 UTC 2025
      95K bytes
      Cache
     
  7. Kernel Approximation — scikit-learn 1.7.0 docum...

    Examples concerning the sklearn.kernel_approximation module. Scalable learning with polynomial kernel approximation
    scikit-learn.org/stable/auto_examples/kernel_approximation/index.html
    Thu Jul 03 11:42:05 UTC 2025
      73.7K bytes
      Cache
     
  8. Covariance estimation — scikit-learn 1.7.0 docu...

    Examples concerning the sklearn.covariance module. Ledoit-Wolf vs OAS estimation Robust covariance estimation and Mahalanobis distances relevance Robust vs Empirical covariance estimate Shrinkage c...
    scikit-learn.org/stable/auto_examples/covariance/index.html
    Thu Jul 03 11:42:06 UTC 2025
      76.5K bytes
      Cache
     
  9. Classifier comparison — scikit-learn 1.7.0 docu...

    A comparison of several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be take...
    scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
    Thu Jul 03 11:42:06 UTC 2025
      114.3K bytes
      Cache
     
  10. Release History — scikit-learn 1.7.0 documentation

    Changelogs and release notes for all scikit-learn releases are linked in this page. Version 1.7- Version 1.7.0., Version 1.6- Version 1.6.1, Version 1.6.0., Version 1.5- Version 1.5.2, Version 1.5....
    scikit-learn.org/stable/whats_new.html
    Thu Jul 03 11:42:05 UTC 2025
      32.7K bytes
      Cache
     
Back to top