- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 261 - 270 of 1,745 for document (0.84 sec)
-
3.4. Metrics and scoring: quantifying the quali...
estimator can be found in its documentation. Scoring parameter : Model-evaluation...See Classification of text documents using sparse features for...scikit-learn.org/stable/modules/model_evaluation.html -
Enterprise Search documentation [8.19] | Elastic
» Enterprise Search documentation Enterprise Search Guide:...Workplace Search Product documentation Website search quickstart...www.elastic.co/guide/en/enterprise-search/8.19/index.html -
Incremental PCA — scikit-learn 1.7.2 documentation
Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA build...scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html -
Classifier comparison — scikit-learn 1.7.2 docu...
A comparison of several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be take...scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html -
Release History — scikit-learn 1.7.2 documentation
Changelogs and release notes for all scikit-learn releases are linked in this page. Version 1.7- Version 1.7.2, Version 1.7.1, Version 1.7.0., Version 1.6- Version 1.6.1, Version 1.6.0., Version 1....scikit-learn.org/stable/whats_new.html -
Logistic function — scikit-learn 1.7.2 document...
Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logistic curve. Total running time of the scrip...scikit-learn.org/stable/auto_examples/linear_model/plot_logistic.html -
GMM covariances — scikit-learn 1.7.2 documentation
Demonstration of several covariances types for Gaussian mixture models. See Gaussian mixture models for more information on the estimator. Although GMM are often used for clustering, we can compare...scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html -
Feature discretization — scikit-learn 1.7.2 doc...
A demonstration of feature discretization on synthetic classification datasets. Feature discretization decomposes each feature into a set of bins, here equally distributed in width. The discrete va...scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_classification.html -
Developing Estimators — scikit-learn 1.7.2 docu...
scikit-learn.org/stable/auto_examples/developing_estimators/index.html -
Covariance estimation — scikit-learn 1.7.2 docu...
Examples concerning the sklearn.covariance module. Ledoit-Wolf vs OAS estimation Robust covariance estimation and Mahalanobis distances relevance Robust vs Empirical covariance estimate Shrinkage c...scikit-learn.org/stable/auto_examples/covariance/index.html