Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1161 - 1170 of 1,826 for document (0.07 sec)

  1. Explicit feature map approximation for RBF kern...

    An example illustrating the approximation of the feature map of an RBF kernel. It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for classification with an...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_kernel_approximation.html
    Sat Nov 23 04:49:15 UTC 2024
      120.1K bytes
      Cache
     
  2. Varying regularization in Multi-layer Perceptro...

    A comparison of different values for regularization parameter ‘alpha’ on synthetic datasets. The plot shows that different alphas yield different decision functions. Alpha is a parameter for regula...
    scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html
    Sat Nov 23 04:49:15 UTC 2024
      104.7K bytes
      Cache
     
  3. get_routing_for_object — scikit-learn 1.5.2 doc...

    Gallery examples: Metadata Routing
    scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.get_routing_for_object.html
    Sat Nov 23 04:49:15 UTC 2024
      107.5K bytes
      Cache
     
  4. 1.8. Cross decomposition — scikit-learn 1.5.2 d...

    The cross decomposition module contains supervised estimators for dimensionality reduction and regression, belonging to the “Partial Least Squares” family. Cross decomposition algorithms find the f...
    scikit-learn.org/stable/modules/cross_decomposition.html
    Fri Nov 22 23:53:27 UTC 2024
      55.8K bytes
      Cache
     
  5. 1.15. Isotonic regression — scikit-learn 1.5.2 ...

    The class IsotonicRegression fits a non-decreasing real function to 1-dimensional data. It solves the following problem:\min \sum_i w_i (y_i - \hat{y}_i)^2 subject to\hat{y}_i \le \hat{y}_j wheneve...
    scikit-learn.org/stable/modules/isotonic.html
    Fri Nov 22 23:53:26 UTC 2024
      33.3K bytes
      Cache
     
  6. 6.7. Kernel Approximation — scikit-learn 1.5.2 ...

    This submodule contains functions that approximate the feature mappings that correspond to certain kernels, as they are used for example in support vector machines (see Support Vector Machines). Th...
    scikit-learn.org/stable/modules/kernel_approximation.html
    Fri Nov 22 23:53:27 UTC 2024
      61K bytes
      1 views
      Cache
     
  7. Comparing different clustering algorithms on to...

    This example shows characteristics of different clustering algorithms on datasets that are “interesting” but still in 2D. With the exception of the last dataset, the parameters of each of these dat...
    scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
    Sat Nov 23 04:49:15 UTC 2024
      120.8K bytes
      Cache
     
  8. SVM: Separating hyperplane for unbalanced class...

    Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automa...
    scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html
    Sat Nov 23 04:49:14 UTC 2024
      89.5K bytes
      Cache
     
  9. Comparison of F-test and mutual information — s...

    This example illustrates the differences between univariate F-test statistics and mutual information. We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on t...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html
    Sat Nov 23 04:49:16 UTC 2024
      87.5K bytes
      Cache
     
  10. Cross-validation on diabetes Dataset Exercise —...

    A tutorial exercise which uses cross-validation with linear models. This exercise is used in the cv_estimators_tut part of the model_selection_tut section of the stat_learn_tut_index. Load dataset ...
    scikit-learn.org/stable/auto_examples/exercises/plot_cv_diabetes.html
    Sat Nov 23 04:49:16 UTC 2024
      95.5K bytes
      Cache
     
Back to top