Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 1141 - 1150 of 3,423 for document (7.13 seconds)

  1. Recognizing hand-written digits — scikit-...

    This example shows how scikit-learn can be used to recognize images of hand-written digits, from 0-9. Digits dataset: The digits dataset consists of 8x8 pixel images of digits. The images attribute...
    scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
    Fri Dec 05 17:52:54 GMT 2025
      102K bytes
      Cache
     
  2. Sparse coding with a precomputed dictionary &#8...

    Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the SparseCoder estimator. The Ricker (also known as Mexican hat ...
    scikit-learn.org/stable/auto_examples/decomposition/plot_sparse_coding.html
    Fri Dec 05 17:52:54 GMT 2025
      107.4K bytes
      Cache
     
  3. Demo of HDBSCAN clustering algorithm — sc...

    In this demo we will take a look at cluster.HDBSCAN from the perspective of generalizing the cluster.DBSCAN algorithm. We’ll compare both algorithms on specific datasets. Finally we’ll evaluate HDB...
    scikit-learn.org/stable/auto_examples/cluster/plot_hdbscan.html
    Fri Dec 05 17:52:54 GMT 2025
      128.9K bytes
      Cache
     
  4. Lasso on dense and sparse data — scikit-l...

    We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. Comparing the two Lasso implementations on Dense data:...
    scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_dense_vs_sparse_data.html
    Fri Dec 05 17:52:55 GMT 2025
      97.4K bytes
      Cache
     
  5. Density Estimation for a Gaussian mixture &#821...

    Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. Total running time of the script:(0 minutes 0.135 sec...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html
    Fri Dec 05 17:52:54 GMT 2025
      93.1K bytes
      Cache
     
  6. Map data to a normal distribution — sciki...

    This example demonstrates the use of the Box-Cox and Yeo-Johnson transforms through PowerTransformer to map data from various distributions to a normal distribution. The power transform is useful a...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_map_data_to_normal.html
    Fri Dec 05 17:52:55 GMT 2025
      105.1K bytes
      Cache
     
  7. Neighborhood Components Analysis Illustration &...

    This example illustrates a learned distance metric that maximizes the nearest neighbors classification accuracy. It provides a visual representation of this metric compared to the original point sp...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nca_illustration.html
    Fri Dec 05 17:52:55 GMT 2025
      100.4K bytes
      Cache
     
  8. Forecasting of CO2 level on Mona Loa dataset us...

    Documentation for GaussianProcessRegre...GaussianProcessRegre ? Documentation for GaussianProcessRegre...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html
    Fri Dec 05 17:52:55 GMT 2025
      152.1K bytes
      Cache
     
  9. Features in Histogram Gradient Boosting Trees &...

    Histogram-Based Gradient Boosting(HGBT) models may be one of the most useful supervised learning models in scikit-learn. They are based on a modern gradient boosting implementation comparable to Li...
    scikit-learn.org/stable/auto_examples/ensemble/plot_hgbt_regression.html
    Fri Dec 05 17:52:55 GMT 2025
      150.9K bytes
      Cache
     
  10. 1.14. Semi-supervised learning — scikit-l...

    Semi-supervised learning is a situation in which in your training data some of the samples are not labeled. The semi-supervised estimators in sklearn.semi_supervised are able to make use of this ad...
    scikit-learn.org/stable/modules/semi_supervised.html
    Fri Dec 05 17:52:54 GMT 2025
      43.5K bytes
      Cache
     
Back to Top