Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1081 - 1090 of 1,699 for document (0.23 sec)

  1. get_scorer — scikit-learn 1.7.0 documentation

    Gallery examples: Release Highlights for scikit-learn 1.4
    scikit-learn.org/stable/modules/generated/sklearn.metrics.get_scorer.html
    Mon Jul 07 14:36:34 UTC 2025
      109.3K bytes
      Cache
     
  2. k_means — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version k_means # sklearn.cluster. k_means ( X , n_clusters ,...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.k_means.html
    Mon Jul 07 14:36:34 UTC 2025
      116.4K bytes
      Cache
     
  3. check_memory — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version check_memory # sklearn.utils.validation. check_memory...
    scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_memory.html
    Mon Jul 07 14:36:35 UTC 2025
      106.1K bytes
      Cache
     
  4. sklearn.metrics — scikit-learn 1.7.0 documentation

    Score functions, performance metrics, pairwise metrics and distance computations. User guide. See the Metrics and scoring: quantifying the quality of predictions and Pairwise metrics, Affinities an...
    scikit-learn.org/stable/api/sklearn.metrics.html
    Mon Jul 07 14:36:35 UTC 2025
      159K bytes
      Cache
     
  5. Probability calibration of classifiers — scikit...

    When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration.html
    Mon Jul 07 14:36:35 UTC 2025
      109.3K bytes
      Cache
     
  6. Species distribution modeling — scikit-learn 1....

    Modeling species’ geographic distributions is an important problem in conservation biology. In this example, we model the geographic distribution of two South American mammals given past observatio...
    scikit-learn.org/stable/auto_examples/applications/plot_species_distribution_modeling.html
    Mon Jul 07 14:36:32 UTC 2025
      122.4K bytes
      Cache
     
  7. Univariate Feature Selection — scikit-learn 1.7...

    This notebook is an example of using univariate feature selection to improve classification accuracy on a noisy dataset. In this example, some noisy (non informative) features are added to the iris...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_feature_selection.html
    Mon Jul 07 14:36:32 UTC 2025
      105.9K bytes
      Cache
     
  8. load_iris — scikit-learn 1.7.0 documentation

    Gallery examples: Plot classification probability Plot Hierarchical Clustering Dendrogram Concatenating multiple feature extraction methods Incremental PCA Principal Component Analysis (PCA) on Iri...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
    Mon Jul 07 14:36:34 UTC 2025
      133.6K bytes
      Cache
     
  9. SVM with custom kernel — scikit-learn 1.7.0 doc...

    Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. Total running time of the script:(0 minutes 0.090 seconds) Launch binder Lau...
    scikit-learn.org/stable/auto_examples/svm/plot_custom_kernel.html
    Mon Jul 07 14:36:35 UTC 2025
      89K bytes
      Cache
     
  10. Kernel Density Estimation — scikit-learn 1.7.0 ...

    This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_digits_kde_sampling.html
    Mon Jul 07 14:36:35 UTC 2025
      93.9K bytes
      Cache
     
Back to top