Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1041 - 1050 of 1,699 for document (0.37 sec)

  1. calinski_harabasz_score — scikit-learn 1.7.0 do...

    Skip to main content Back to top Ctrl + K GitHub Choose version calinski_harabasz_score # sklearn.metrics. calinski_h...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
    Mon Jul 07 14:36:34 UTC 2025
      107.6K bytes
      Cache
     
  2. Shrinkage covariance estimation: LedoitWolf vs ...

    When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as the EmpiricalCovariance. It is unbiased, i.e. it converges to the true (population) cov...
    scikit-learn.org/stable/auto_examples/covariance/plot_covariance_estimation.html
    Mon Jul 07 14:36:35 UTC 2025
      108.5K bytes
      Cache
     
  3. 1.1. Linear Models — scikit-learn 1.7.0 documen...

    Examples Classification of text documents using sparse features 1.1.2.3....Stochastic Gradient Descent documentation section for more details....
    scikit-learn.org/stable/modules/linear_model.html
    Mon Jul 07 14:36:32 UTC 2025
      221.2K bytes
      Cache
     
  4. Demonstration of multi-metric evaluation on cro...

    Multiple metric parameter search can be done by setting the scoring parameter to a list of metric scorer names or a dict mapping the scorer names to the scorer callables. The scores of all the scor...
    scikit-learn.org/stable/auto_examples/model_selection/plot_multi_metric_evaluation.html
    Mon Jul 07 14:36:35 UTC 2025
      101.5K bytes
      Cache
     
  5. One-class SVM with non-linear kernel (RBF) — sc...

    An example using a one-class SVM for novelty detection. One-class SVM is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or differen...
    scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
    Mon Jul 07 14:36:35 UTC 2025
      100.8K bytes
      Cache
     
  6. Manifold learning on handwritten digits: Locall...

    We illustrate various embedding techniques on the digits dataset. Load digits dataset: We will load the digits dataset and only use six first of the ten available classes. We can plot the first hun...
    scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
    Mon Jul 07 14:36:35 UTC 2025
      119.3K bytes
      Cache
     
  7. is_multilabel — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version is_multilabel # sklearn.utils.multiclass. is_multilab...
    scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.is_multilabel.html
    Thu Jul 03 11:42:05 UTC 2025
      107.3K bytes
      Cache
     
  8. Getting Started — scikit-learn 1.7.0 documentation

    The purpose of this guide is to illustrate some of the main features that scikit-learn provides. It assumes a very basic working knowledge of machine learning practices (model fitting, predicting, ...
    scikit-learn.org/stable/getting_started.html
    Mon Jul 07 14:36:34 UTC 2025
      48.7K bytes
      Cache
     
  9. Release Highlights — scikit-learn 1.7.0 documen...

    These examples illustrate the main features of the releases of scikit-learn. Release Highlights for scikit-learn 1.7 Release Highlights for scikit-learn 1.6 Release Highlights for scikit-learn 1.5 ...
    scikit-learn.org/stable/auto_examples/release_highlights/index.html
    Mon Jul 07 14:36:35 UTC 2025
      80.8K bytes
      Cache
     
  10. Frozen Estimators — scikit-learn 1.7.0 document...

    Examples concerning the sklearn.frozen module. Examples of Using FrozenEstimator
    scikit-learn.org/stable/auto_examples/frozen/index.html
    Mon Jul 07 14:36:35 UTC 2025
      73.2K bytes
      Cache
     
Back to top